CBCS SCHEME

USN BCIVC103/203

First/Second Semester B.E./B.Tech. Degree Examination, June/July2024 Engineering Mechanics

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

Module – 1 Explain the following: i) Principle of transmissibility of a force	<u>M</u>	L L2	CO1
	6	L2	COI
ii) Composition of forces and resolution of a force.			
Determine the fourth unknown force in magnitude and direction so that the resultant \vec{R} acts as shown in the Fig.Q.1(b).	6	L3	CO1
respect to point A. Also, locate the point where the resultant cuts the line AB. 2m 2m 2m Fig.Q.1(c)	8	L3	CO1 2
		10	001
State and prove principle of moments.	6	L2	CO
Determine the unknown force \vec{F} and its direction so that the resultant \vec{R} of magnitude 72N acts along the positive direction of Y axis (\uparrow).	6	L3	COI
1	Fig.Q.1(b) Compute the resultant of the force system shown in the Fig.Q.1(c) with respect to point A. Also, locate the point where the resultant cuts the line AB. Fig.Q.1(c) OR State and prove principle of moments. Determine the unknown force \vec{F} and its direction so that the resultant \vec{R} of magnitude 72N acts along the positive direction of Y axis (\uparrow).	resultant \bar{R} acts as shown in the Fig.Q.1(b). Compute the resultant of the force system shown in the Fig.Q.1(c) with respect to point A. Also, locate the point where the resultant cuts the line AB. Fig.Q.1(c) OR State and prove principle of moments. Determine the unknown force \bar{F} and its direction so that the resultant \bar{R} of magnitude 72N acts along the positive direction of Y axis (\uparrow).	resultant \bar{R} acts as shown in the Fig.Q.1(b). Compute the resultant of the force system shown in the Fig.Q.1(c) with respect to point A. Also, locate the point where the resultant cuts the line AB. State and prove principle of moments. OR State and prove principle of moments. 6 L2 Determine the unknown force \bar{F} and its direction so that the resultant \bar{R} of magnitude 72N acts along the positive direction of Y axis (1).

BCI	VC10)3/203
Compute the magnitude and direction of the resultant of the force system shown in the Fig.Q.2(c) with respect to point A of the equilateral triangle ABC. Side of triangle is 100mm. Also, find the location of the resultant along the edge AC. Solution Solution	L3	CO1
Module – 2		001
Define equilibrium. State the conditions for the equilibrium of coplanar i) Concurrent force system ii) non-concurrent force system.	L	CO2
In the given string system, determine the tensions in the strings and angle θ for equilibrium. Fig.Q.3(b) Determine the reactions in the beam shown in the Fig.Q.3(c).		
Fig.Q.3(c)		
i) Statically determinate and indeterminate beams.ii) Hinged support and fixed support.	6 1	L2 CO
Compute the reactions at the contact points in the system shown (1, 2, 3, 4). Weight of sphere A = 50N Weight of sphere B = 80N Diameter of sphere B = 100mm Diameter of sphere B = 100mm	8	L3 CO2
a	Some shown in the Fig.Q.2(c) with respect to point A of the equilateral triangle ABC. Side of triangle is 100mm. Also, find the location of the resultant along the edge AC. Module - 2	Sompute the magnitude and direction of the resultant of the force system shown in the Fig.Q.2(c) with respect to point A of the equilateral triangle ABC. Side of triangle is 100mm. Also, find the location of the resultant along the edge AC. Define equilibrium. State the conditions for the equilibrium of coplanar i) Concurrent force system ii) non-concurrent force system.

Q.5 a. b. c.	method of joints. A Gm Gm C Am	10	L3	CO2
b. c.	Determine the forces in the members of the truss shown in the figure by the method of joints.	10	L3	
b. c.	method of joints. A GM GM GM C AMM	10	L3	
c.	3m 6m Fig.Q.5(a)			CO3
c.				
	State the laws of dry friction.	3	L2	CO3
Q.6 a.	by a force of 200N acting parallel to the plane and it is at the point of moving up the plane when pulled by a force of 300N parallel to the plane. Find the inclination of the plane and the coefficient of friction between the inclined plane and the weight.		L3	CO3
Q.0 a.	OR Compute the forces in the members of the trues shown in the Fig O 6(a) by	10	1.2	CO
	Compute the forces in the members of the truss shown in the Fig.Q.6(a) by the method of joints. Fig.Q.6(a)	10	L3	COS
b.	Distinguish between angle of friction and angle of repose. Illustrate with a sketch.	3	L2	CO3
c.	A uniform ladder 4m long weighing 300N is placed against a vertical wall	7	L3	CO3

		B	CIV	C10.	3/203
		Module – 4			
		From first principles, derive the expression for locating the centroid of a	6	L3	CO4
.7	a.	From first principles, derive the expression for fooding resemi-circular section.			-
	b.	Illustrate: i) Parallel axis theorem ii) Perpendicular axis theorem.	4	L2	CO4
		Determine the polar moment of inertia of the I-section shown in	10	L3	CO ₄
	c.	Fig.Q.7(c). All the dimensions are in mms.			
		116.2.7(0).124			
		下 12			
		150			
		10			
		120			
		Fig.Q.7(c)			
		OR			1.
0.0		Design the averageion for the moment of inertia of a triangular section	1 6	L3	CO
Q.8	a.	about its base. Hence, arrive at the expression about its parallel centroida	1		
		axis.			
					00
	b.	Define and give the mathematical expressions for : i) Moment of inerti	a 4	L2	CO
	0.	ii) Radius of gyration.			
				0 7	
	c.	Locate the centroid of the shaded lamina shown in the Fig.Q.8(c). Give	n 1	0 L3	3 CO
	C.	that the centroid of the circle and the shaded lamina coinside.			
		y 1 100 ->1 winder			
		The Shade			
		nin .			
		100/1/12			
		150 G 75	*		
		1//////////////////////////////////////	i		
		K 200			
		Fig.Q.8(c)			
		118.4.5(0)			
		Module – 5			
0.4	0	De the three fundamental equations of linear motion.		6 I	_2 C
	9 8	. Derive the infee fundamental equations of finear most			
Q.9	1	Determine the least initial velocity with which a projectile is to	be	6 I	_3 CC
Q.		projected so that it clears a wall 4m height located at a distance of 5m, a	na		
Q.		projected so that it clearly a wait in heads	1.00		
Q		strikes the horizontal plane through the foot of the wall at a distance 2	+111		
Q.,		strikes the horizontal plane through the foot of the wall at a distance a beyond the wall. The point of projection is at the same level as the foot	of		
Q.,		beyond the wall. The point of projection is at the same level as the foot	of		
· ·		strikes the horizontal plane through the foot of the wall at a distance a beyond the wall. The point of projection is at the same level as the foot the wall.	of		
		beyond the wall. The point of projection is at the same level as the foot	of		

		ВС	IV	C103	3/203
6	c.	Compute the acceleration of the system and the tension in the string shown in the Fig.Q.9(c). Adopt D'Alembert's principle. W=800 N A=0.3 Fig.Q.9(c)	8	1.3	CO5
		OR			
Q.10	a.	State and explain D'Alembert's principle. Give an example.	6	L2	CO
	b.	A ball is thrown vertically upwards with an initial velocity of 36m/s. After 2 seconds, another ball is thrown vertically upwards. What should be its initial velocity so that it crosses first ball at a height of 30m?	8	L3	CO
	c.	A projectile is aimed at a target on the horizontal plane and falls 12m short when the angle of projection is 15°, while it overshots by 24m when the angle is 45°. Determine the angle of projection to hit the target.	6	L3	СО
		5 of 5			