BME301

Mechanics of Materials

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

3 hrs.

		Module – 1	M	L	C
Q.1	a.	Define the following with necessary equations:	10	L1	CO ₁
X.,		(i) Normal stress (ii) Shear stress (iii) Poisson's ratio			
		(iv) Young's modulus (v) Thermal stress			
	b.	The tensile test was conducted on a mild steel bar. The following was	10	L3	CO ₁
	D.	obtained from the test:			
		Diameter of steel bar = 16 mm; Gauge length of the bar = 80 mm;			
		Load at proportionality limit = 72 kN; Extension at a load of			
		60 kN = 0.115 mm; Load at failure = 80 kN ; Final gauge length of			
		bar = 104 mm; Diameter of the bar at failure = 12 mm			
		Determine: (i) Young's modulus (ii) Proportionality limit			
		(iii) True breaking stress (iv) Percentage elongation			
		(v) Percentage decrease in area OR			
0.4		Write the relation between the following with usual notations and meaning:	06	L1	CO1
Q.2	a.		00	LII	COI
		(i) Modulus of elasticity and bulk modulus			
		(ii) Modulus of elasticity and modulus of rigidity			
	-	(iii) Modulus of elasticity, modulus of rigidity and bulk modulus	04	L1	CO1
	b.	Define the following:	04		COI
		(i) Gradual load (ii) Sudden load (iii) Impact load (iv) Shock load	10	L3	CO
	c.	Rails laid such that there is no stress in them at 24°C. If the rails are 32 m	10	L3	CO
		long, determine:			
		(i) The stress in the rails at 80°C, when there is no allowance for			
		expansion.			
		(ii) The stress in the rails at 80°C, when there is an expansion allowance of			
		8 mm per rail			
		(iii) The expansion allowance for no stress in the rails at 80°C.			
		Take $\alpha = 11 \times 10^{-6} / ^{\circ}\text{C}$, E = 205 GPa.			
		Module – 2			
Q.3	a.	Derive the expression for normal stress and shear stress on a plane inclined	10	L2	CO
		at 'θ' angle to the vertical axis in a biaxial stress system with shear stress.			
	b.	For the two-dimensional stressed element, shown in Fig.Q3(b), determine	10	L3	CO
		the value of: (i) Maximum and minimum principal stress			
		(ii) Principal planes (iii) Maximum shear stress and its plane			
4		Verify the answer's by Mohr's circle method			
		432MPa			
		3.2 MPa			
				,	
>>		80 МРа			
		Ta la			
		32 MPa			
		Fig.Q3(b)			
		1 of 3			

. Filippy

				BMI	E301
*		Module – 5		¥ 4 1	00"
Q.9	a.	Define the following with necessary equations:	06	L1	CO5
		(i) Torque (ii) Polar modulus (iii) Torsional rigidity	04	L1	CO5
	b.	State the assumptions made in theory of torsion. T τ θ	10	L2	CO5
	c.	Derive torsion equation in the form of $\frac{T}{J} = \frac{\tau}{R} = \frac{G\theta}{L}$.			
		OR	10	T 1	COS
0.10	a.	Define the following:	10	L1	CO.
Q.10	a.	(ii) Buckling load (iii) Stenderness ratio			
		(1) Chart column	10	L2	CO
	b.	to Euler buckling load when both ends of the column	10	LZ	CO.
	D.	are fixed.			

The State of the S