

17EC71

Seventh Semester B.E. Degree Examination, June/July 2024 Microwave and Antennas

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Describe the mechanism and oscillations of Reflex Klystron. (08 Marks)
 - b. Derive the general transmission line equation to find voltage and current on the line.

(08 Marks)

c. A transmission line working at Radio Frequency has the following constant, $L = 9\mu H/m$, C = 16 pF/m the line is terminated is a load of $2k\Omega$. Find: i) characteristics impedance ii) SWR. (04 Marks)

OR

- 2 a. Define Reflection coefficient. Derive the equation for reflection coefficient at the load end at a distance 'd' from the load. (08 Marks)
 - b. What are standing waves? Derive the equation of VSWR and write the relationship between VSWR and reflection coefficient. (08 Marks)
 - c. A transmission line has following parameters $R=2\Omega/m$, G=0.5mmho/m, f=1GHz, L=8nH/m, C=0.23pF/m, calculate:
 - i) Characteristics impedance
 - ii) Propagation constant

(04 Marks)

Module-2

3 a. List the properties of S-matrix and briefly explain any four.

(10 Marks) (10 Marks)

b. Explain with relevant diagrams, applications and operations of magic tee.

OR

4 a. Compare Low frequency and microwave frequency networks.

(08 Marks)

b. Discuss about different types of co-axial connectors.

(04 Marks)

c. With a neat diagram, explain the working of precision type variable attenuator.

(08 Marks)

Module-3

- 5 a. Explain Radio communication link with relevant diagrams and equations. (08 Marks)
 - b. Explain the concept of shielded strip line and co-planar strip line with neat diagram.

(04 Marks)

c. A radio link has 15W transmitter connected to an antenna of 2.5m² effective aperture at 5GHz. The receiving antenna has an effective aperture of 0.5m² and located at 15km distance from the transmitting antenna. Assuming lossless matched antennas, find the power delivered to the receiver. (08 Marks)

OR

- 6 a. Define the following:
 - i) Radiation pattern ii) Radiation intensity iii) Gain iv) Effective Height. (08 Marks)
 - b. Write a short note on Antenna field zones.

(06 Marks)

c. An antenna has a field pattern given by $E(\theta) = \cos^2 \theta$ for $0 \le \theta \le \pi/2$. Find the Beam are and directivity. (06 Marks)

(10 Marks)

(05 Marks)

(05 Marks)

Module-4 Derive an expression and draw the field pattern for an array of two isotropic point sources With same amplitude and phase spaced $\lambda/2$ apart. (08 Marks) b. Explain the power theorem and its applications to an isotropic source. (06 Marks) c. A source has a radiation intensity power pattern given by $U = U_m \sin \theta$ for $0 \le \theta \le \pi$; $0 \le \phi \le 2\pi$. Find the total power and directivity. (06 Marks) Explain the principle of pattern multiplication with example (06 Marks) Derive the radiation resistance of $\lambda/2$ antennas. (08 Marks) Explain the concept of thin array antenna. (06 Marks) Module-5 Derive the Radiation Resistance of small loop antenna. (10 Marks) Explain with a neat diagram about the Rectangular Horn Antenna. (10 Marks) Write short notes on: 10

* * * * *

ii) Parabolic Reflector.

c. Discuss on the practical design considerations of Helical Antenna

i) Yogi-Uda array

b. Explain in detail about Log periodic antenna.