

BEC403

Semester B.E./B.Tech. Degree Examination, June/July 2024

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

Control Systems

Module – 1 Define Control system. Write down any four differences between Open Loop Control System and Closed Loop Control System. For the mechanical system shown in Fig. Q1(b), obtain the equivalent electrical system using Force – Voltage method.	M 4 8	L L2	CO1
Define Control system. Write down any four differences between Open Loop Control System and Closed Loop Control System. For the mechanical system shown in Fig. Q1(b), obtain the equivalent electrical system using Force – Voltage method.			
electrical system using Force – Voltage method.	8	L2	CO1
M ₁ V FC(t)			
For the mechanical system, shown in Fig. Q1(c), obtain the equivalent electrical system using Force – Current method. Fig. Q1(c) Fig. Q1(c)	8	L2	CO1
OR	1		
For the mechanical system shown in Fig. Q2(a), obtain the equivalent electrical system using Force – Voltage method. Fig. Q2(a) Fig. Q2(a) Fig. Q2(a) Fig. Q2(a) Fig. Q2(a)	7	L2	CO1
	Fig. Q1(c) Fig. Q1(c) Fig. Q1(c) Fig. Q2(a) Fig. Q2(a), obtain the equivalent electrical system using Force — Voltage method. Fig. Q2(a) Fig. Q2(a) Fig. Q2(a) Fig. Q2(a) Fig. Q2(a), obtain the equivalent electrical system using Force — Voltage method.	For the mechanical system, shown in Fig. Q1(c), obtain the equivalent electrical system using Force – Current method. Fig. Q1(c) OR For the mechanical system shown in Fig. Q2(a), obtain the equivalent electrical system using Force – Voltage method. Fig. Q2(a) Fig. Q2(a) Fig. Q2(a) Fig. Q2(a) Fig. Q2(a)	For the mechanical system, shown in Fig. Q1(c), obtain the equivalent electrical system using Force – Current method. Fig. Q1(c) OR For the mechanical system shown in Fig. Q2(a), obtain the equivalent electrical system using Force – Voltage method. Fig. Q2(a) Fig. Q2(a) Fig. Q2(a) Fig. Q2(a) Fig. Q2(a)

			_		
	b.	For the mechanical system shown in Fig. Q2(b), obtain the equivalent electrical system using Force – Voltage method.	7	L2	CO1
		Childlelli	271		
		2112	2 - 4	9 ⁻⁸ , 13	
		1 k ₂ 9 F b ₃			
		B_1 M_2			
		K.3 \$ 82			
		Fig. Q2(b)			
		4866)			
	c.	Draw the electrical network based on torque – current analogy and write	6	L2	CO1
		performance equation for the mechanical system of Fig. Q2(c).			
		T(1) J_ mm (J2) mm (J3)			
		Fig. Q2(c) B ₂ B ₂ B ₃			
		Module – 2		l .	
Q.3	a.	Find $\frac{C(s)}{R(s)}$ by Mason's gain formula for Fig. Q3(a).	6	L3	CO3
2.0		R(s) by Mason's gain formala for Fig. (5(a).			
		-He			
		46			
		R(s) G1 145 G7 98 C(s)			
		5 164			
		Fig. Q3(a) (43)			
		$-A_3$			
	b.	Determine the transfer function $\frac{C(s)}{R(s)}$ of the system shown in Fig. Q3(b).	6	L3	CO3
		R(s)			
		93			
		$\begin{array}{c c} & + & + & + & + & + & + & + & + & + & $			
		41 742 7			
		Fig. Q3(b)			
		H ₂			
	c.	For the single flow graph of Fig. Q3(c), find the transfer function using	8	L3	CO3
		Mason's gain formula.			
		Gs A			
		T C2			,
		R(S) 1 (GS) 1 (C(S)			
		G ₃ G ₄			
		Fig. Q3(c)			
		-H ₂			
		L Y	Laster		

		OR			
Q.4	a.	Reduce the block diagram to its canonical form and obtain C(s)/R(s) of the system of Fig. Q4(a).	6	L3	CO3
		RCS G1 8 G2 G3 7G4 8 CCS			
		Fig. Q4(a)			
	b.	Obtain the transfer function of the single flow graph shown in Fig. Q4(b), using Mason's gain formula. RG 1 C4	6	L3	CO3
		Fig. Q4(b)			
	c.	Reduce the block diagram of Fig. Q4(c) to its simple form and obtain $C(s)/R(s)$. Fig. Q4(c)	8	L3	CO3
		Module – 3		l .	l.
Q.5	a.	With the help of graphical representation and mathematical expression, explain the following test signals: i) Step signal ii) Ramp signal iii) Impulse signal iv) Parabolic signal.	8	L3	CO2
	b.	Find Kp , Kv , Ka and steady state error for a system with Open loop transfer function $G(s) H(s) = \frac{10(s+2)(s+3)}{s(s+1)(s+4)(s+5)}$, where $r(t) = 3 + t + t^2$.	6	L3	CO2
	c.	The Open loop transfer function of a servo system with unity feedback is given as $G(s) = \frac{10}{s(0.1s+1)}$. Find out static error constants and obtain steady state error when an input $r(t) = A_0 + A_1 t + \frac{A_2}{2} t^2$ is applied.	6	L3	CO2
		OR			
Q.6	a.	For a unity feedback control system with $G(s) = \frac{64}{s(s+9.6)}$, write the output response to a unit step input. Determine	10	L2	CO3
		 The response at t = 0.1 set Maximum value of response and the time at which it occurs. Settling time. 			
		2 of 5			

	b.	For the system shown in Fig. Q6(b), 1) Identify the type of C(s) / E(s)	10	L2	CO3
		2) Find values of Kp, Kv, Ka.			
		3) If $r(t) = 10u(t)$, find steady state value of the output.			
		R(s) = E(s)			
		X - (22(52+(+10))			
		Fig. Q6(b)			
0.5	_	Module – 4	-	Τ.Δ	604
Q.7	a.	Find the number of roots with positive real part, zero real part and negative real part for a system $s^6 + 4s^5 + 3s^4 - 16s^2 - 64s - 48 = 0$.	6	L2	CO4
		real part for a system's + 4s + 5s - 10s - 04s - 40 - 0.			
	b.	For a unity feedback system,	6	L2	CO4
					001
		$G(s) = \frac{K}{s(1+0.4s)(1+0.25s)}$, find range of values of K, Marginal value of			50
		K and frequency of sustained oscillations.			
		R and requerey of sustained oscinations.			
	c.	Explain the angle condition in Root locus. Test the following points using	8	L2	CO4
		angle condition for the system			
		G(s) H(s) = $\frac{K}{s(s+2)(s+4)}$.			
		i) $s = -0.75$ ii) $s = -1 + j4$.			
		OR			
Q.8	a.	Sketch the complete root locus and comment on the stability of the system	12	L2	CO4
		$G(s) H(s) = \frac{K}{s(s+1)(s+2)(s+3)}.$			
		s(s+1)(s+2)(s+3)			
		Y OV			
	b.	Sketch the Bode plot for the transfer fl. Find value of 'K' for	8	L2	CO4
		$W_{gc} = 5 \text{ rad/sec.}$			
		$G(s) = \frac{K s^2}{(1+0.2s)(1+0.02s)}$			
		(1+0.2s)(1+0.02s)			
		· · · · · · · · · · · · · · · · · · ·			
		Module – 5			
Q.9	a.	For a certain control system	10	L2	CO5
		$G(s) H(s) = \frac{K}{s(s+2)(s+10)}$, sketch the Nyquist plot and hence calculate the			
		range values of K for stability.			
	-				,
	b.	Explain the Lag compensator and Lead compensator with the help of a	10	L2	CO5
		circuit diagram.			
		OR			
		UN			

Q.10	a.	Construct the state model using phase variables if the system is described by the differential equation	6	L2	CO
		$\frac{d^3y(t)}{dt^3} + 4\frac{d^2y(t)}{dt^2} + 7\frac{dy(t)}{dt} + 2y(t) = 5u(t)$. Also draw the state diagram.			
	b.	The transfer function of a control system is	7	L2	CC
		$\frac{Y(s)}{U(s)} = \frac{s^2 + 3s + 4}{s^3 + 2s^2 + 3s + 2}$. Obtain the State model using signal flow graph.			
		$U(s)$ $s^3 + 2s^2 + 3s + 2$			
	c.	Find the state transition matrix for	7	L1	C
		$A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}$			
		4' 64			
		Y. Comments of the comment of the co			

		* * * * *			

		* * * * *			
		* * * * *			
		* * * * *			
		* * * * * *			
		* * * * * * *			
		* * * * * *			

		5 of 5			
		5 of 5			