

hird Semester B.E. Degree Examination, June/July 2024 **Electronic Devices**

Time: 3 hrs.

Max. Marks: 100

18EC33

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. With neat diagrams, explain the different types of bonding forces in solids. (06 Marks)
 - b. Write explanatory notes on Intrinsic material with respect to electron hole pairs creation, generation rate and recombination rate. (06 Marks)
 - c. With a neat diagram, explain Hall effect and Hall voltage with necessary equations. Explain how Hall effect can be used to detect whether a given unknown sample of semi-conductor is p-type of n-type.

 (08 Marks)

OR

- 2 a. Explain the energy band structure of solids for insulator, semi-conductor and metal with neat diagram. (04 Marks)
 - b. With neat energy band diagrams and chemical bond model of dopants, explain the formation of n-type and p-type semi-conductors. (08 Marks)
 - c. Derive the expression for drift velocity of electrons with applied electric field. (08 Marks)

Module-2

- 3 a. With neat diagram, explain the effect of Forward bias of a p-n junction, with respect to transition width, electric field, electrostatic potential barrier, energy band diagram and particle flow and current direction within transition region 'W', (08 Marks)
 - b. Explain Zener Breakdown with neat energy band diagram. Explain the significance of impact ionization in Avalanche Breakdown with neat diagrams. Derive the expression for Electron multiplication factor M_n . (08 Marks)
 - c. Draw the Piecewise-Linear approximations of a junction diode and explain how a diode can be used as rectifier. (04 Marks)

OR

- a. What are Photodiodes? Explain the significance of current in an illuminated junction and derive the equation for photodiode current and open circuit voltage V_{OC}. (09 Marks)
 - b. What are the necessary requirements to utilize maximum amount of optical energy to design a solar cell, with neat diagrams. (05 Marks)
 - c. Explain the principle of operation of Light Emitting Diode (LED) with necessary biasing and requirement of energy band gap energy. (06 Marks)

Module-3

- 5 a. With neat diagrams of normal biasing and I-V characteristics, explain the working of a p-n-p transistor. (06 Marks)
 - b. Derive the expression for 'α' and 'β' of a transistor in terms of base transport factor 'B' and emitter injection efficiency 'γ'.
 (06 Marks)
 - c. Starting from the current component of emitter current I_{EN} collects current I_{CN} in normal mode and I_{EI} and I_{CI} in inverted mode with hole concentrations Δ_{PE} and Δ_{PC} , derive the Ebers Moll equations. (08 Marks)

OR

- With a neat equivalent circuit diagram, explain the coupled-diode property of Ebers Moll equations.
 - b. With a neat switching circuit of BJT in common-emitter configuration, explain the switching operation.
 - With a neat waveform of collector current during transient define the terms delay time (t_d), rise time (t_r) and fall time t_f.

Module-4

- With neat cross sectional diagrams, I-V characteristics and zero gate voltage, explain the 7 (06 Marks) effect of drain voltage on drain current.
 - With a neat diagram, explain the small signal equivalent circuit of JFET, Arriving at ideal small-signal equivalent circuit derive the expression for the drain current I_{ds}. (08 Marks)
 - What are the two frequency limitation factors in a JFET? With small signal equivalent circuit with capacitance, derive the expression for cutoff frequency f_{T} . (06 Marks)

OR

- With a cross section diagrams and circuit symbols, explain the operation of 8
 - i) a n-channel enhancement mode MOSFET
 - (06 Marks) ii) a-n-channel depletion mode MOSFET.
 - b. Explain the energy band diagrams of the MOS capacitor with a n-type substrate for various Gate biases.
 - With neat cross section diagram and I_D versus V_{DS} curve when V_{GS} > V_T, explain the operation of the MOS structure for: iii) $V_{DS} = V_{DS(sat)}$ iv) $V_{DS} > V_{DS(sat)}$
 - ii) a larger V_{DS} i) a small V_{DS}

- (08 Marks)

Module-5

- With a neat Schematic diagram, explain Rapid Thermal Processing. (06 Marks)
 - Explain about Ion implantation with a neat Schematic diagram. (08 Marks) (06 Marks)
 - With a neat diagram, explain Low Chemical Vapor Deposition (LPCVD).

OR

- (08 Marks) Discuss the advantages of Integration of circuits.
 - With a neat diagram of simplified description to steps describe the fabrication of p-n diodes (08 Marks) on a wafer. (04 Marks)
 - Describe the types of Integrated circuits.