USÑ.

BEC304

Third Semester B.E./B.Tech. Degree Examination, June/July 2024 Network Analysis

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Reduce the network shown in Fig. Q1 (a) to a single voltage source in	10	L3	CO1
		series with resistance between terminals A and B. Use source			
		transformation and source shifting technique.			
		162			
		Cal			
		4r			
		The state of the s			
		(1) 90 A (2) 60V		14	
		A Ly			
		102			
		20.2			20
		Fig. Q1 (a)			
	b.	Determine voltage V ₃ in the circuit shown in Fig. Q1 (b), using loop	10	L3	CO1
		analysis.			
		10-7-			
		80v (+) 3201 (2)30v			
		800			
		1511 15			
		32 405 V			
		304			
		Fig. Q1 (b)			
		OR			
Q.2	a.	For the network shown in Fig. Q2 (a), compute all node voltages V ₁ , V ₂ , V ₃	8	L3	CO1
	(A)	and V ₄ using Node analysis.	8		
	V	Vi mi v2			
	×	10-2 36 (4)			
		5v (=) 35-2 (=)5v			
		V ₃ V ₄			
		2A 5			
		222			
		¥* ±			
		Fig. Q2 (a)			
			1		

				* A	001
	b.	Determine the entity left resistance between terminar 17	7	L3	CO1
		network shown in Fig. Q2 (b), using star Delta transformation.			
		5-1			
		Ao			
		\$6.2 \$18.2			
		\$ 64	1		
		623 3182			
		B. m			
		61			
		Fig. Q2 (b)			
			-	Y 2	CO1
	c.	Find the potential difference between terminals M and N in the network	5	L3	CO1
		shown in Fig. Q2 (c), using source transformation.			
		a M			
		X 342 \$10V			
	1	15v \$ 810V			
		30 \$, 21			
		2A			
		N N			
		Fig. Q2 (c)			
		Module – 2		3	
0.2	Т_	the resistance persons 20 register in the circuit shown in Fig. O3 (a).	10	L3	CO2
Q.3	a.	using the super position theorem.			
		using the super position theorem.			
		102 22 230 25			
		3000			
		(D2A = 20v			
		A			
		Fig. Q3 (a)			
			10	T 2	CO2
	b		10	L3	002
		Fig. Q3 (b).		8	
	0.0	A A			
		30 5-2			
		4 0 2 4			
		2 SV2 (DIOA TOX			
		3-12 3 VA			
		B			
		Fig. Q3 (b)			
		115. (3)			

		OR			
Q.4	a.	Determine the load resistance to receive maximum power from the source. Also find the maximum power delivered to the load in the circuit shown in Fig. Q4 (a).	8	L3	CO2
	b.	For the circuit shown in Fig. Q4 (b), determine current I_L using Norton's theorem. $2 \sqrt{3} + 4 \sqrt{3} \sqrt{14} 1$	8	L3	CO2
	c.	State Millman's theorem.	4	L2	CO2
Q.5	a.	In the network shown in Fig. Q5 (a), a switch K is closed at $t = 0$. Determine $\frac{di_1}{dt}$, $\frac{di_2}{dt}$ at $t = 0^+$. Fig. Q5 (a) In the Network shown in Fig. Q5 (b), the switch K is changed position from	10	L3	CO3
		a to b at $t = 0$. Solve for i, $\frac{di}{dt}$, $\frac{d^2i}{dt^2}$ at $t = 0^+$. The circuit is reached steady state before switching.			

		OR	16	Y 6	000
Q.6	a.	In the network shown in Fig. Q6 (a), steady state has been reached with switch K open. At time $t=0$, the switch is closed. Deteremine the value of $V_a(0^-)$ and $V_a(0^+)$ at $t=0^+$.	10	L3	CO3
	b.	Fig. Q6 (a) In the network shown in Fig. Q6 (b), a steady state is reached with switch K closed. At $t=0$, switch is opened. Determine voltage across switch V_K ,	10	L3	CO3
		$\frac{dV_{K}}{dt} \text{ at } t = 0^{+}.$ $\frac{dV_{K}}{dt} \text{ at } t = 0^{+}.$ Fig. Q6 (b)			
		Module – 4	10	T 2	CO2
Q.7	a.		10		CO3
	b.	Assume that waveform is periodic. 1 Fig. Q7 (b)	10	L3	
Q.8	a	In the series RL circuit shown in Fig. Q8 (a), the source voltage is $V(t) = 50 \sin 250 t$ V. Using Laplace transform determine the current i(t) when switch K is closed at $t = 0$.	10	L3	CO3

	b.	Find Laplace transform of the waveform shown in Fig. Q8 (b).	10	L3	CO3
		Yo : :			
		O 1 2 3 4 Fig. Q8 (b)			
		Module – 5			
Q.9	a.	Find Z and ABCD parameters for the network shown in Fig. Q9 (a). Also verify whether network is Reciprocal or Symmetrical.	10	L3	CO4
		+ 07 WM 12 + 12 + 1			
		Fig. Q9 (a)			88
	b.	A series RLC circuit has a resistance of $10~\Omega$, an inductance of $0.3~H$ and a capacitance of $100~\mu F$. The applied voltage is $230~V$. Find Resonance frequency, lower and upper cut-off frequencies, current at resonance, current at f_1 and f_2 , voltage across inductance at resonance.	10	L3	CO4
		OR			004
Q.10	a.	Derive Z-parameters in terms of H parameter.	8	L3	CO4
	b.	Find the value of L for which the circuit resonates at frequency of 1000 rad/sec, for the circuit shown in Fig. Q10 (b).	7	L3	CO4
		\$5n \$10n			
		37L -j/2-2			
	9	Fig. Q10 (b)			
	c.	Derive the relation between resonating frequency and half power frequencies i.e. $f_r = \sqrt{f_1 f_2}$	5	L2	CO4
		1 1 2			