

17EE81

Eighth Semester B.E. Degree Examination, June/July 2024 Power System Operation and Control

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Mention the objectives of power system control? Explain. (06 Marks)
 - b. What are the major components of the energy management centers and explain. (07 Marks)
 - c. With diagram, describe the major components of SCADA system. (07 Marks)

OR

- 2 a. Mention the essential preventive and emergency control measures required to maintain power system in the normal state. (07 Marks)
 - b. Explain the common communication channels used for SCADA in power systems. (06 Marks)
 - c. Explain the details constraints used in unit commitment. (07 Marks)

Module-2

- 3 a. Explain discrete time interval method of hydro thermal scheduling. (12 Marks)
 - b. With block diagram, explain the two major control loops of generator. (08 Marks)

OR

- 4 a. With block diagram, explain the conventional speed governor operation. (06 Marks)
 - b. Explain the following terms used in AGC:
 - i) Control area ii) Frequency bias iii) load frequency error.
- (06 Marks)

c. A two plant system has the following characteristics

$$F_T = 20P_{GT} + 0.04 P_{GT}^2 Rs/hr$$

$$Q = 7.5P_{GH} + 0.04P_{GT}^2 \text{ mt}^3/\text{sec}$$

$$\gamma = 4.1 \times 10^{-4} \text{Rs/mt}^3$$
, $\lambda = 70 \text{ Rs/mWhr}$

 $B_{HH} = 0.0025 \text{mW}^{-1}$.

Determine the generation of each plant, the load on the system and the losses. (08 Marks)

Module-3

- 5 a. With relevant equations, derive mathematical model of generator for ALFC. (10 Marks)
 - b. Prove that the adding a feedback of PI controller to ALFC loop, the steady state frequency deviation in zero. (10 Marks)

OR

6 a. For two area system i.e area A_1 and are A_2 with primary loop, derive an expression for frequency deviation and tie-time power flow when the load in area A_1 area changes.

(12 Marks)

b. Two generating areas have capacities of 500 and 1000mW respectively. They are interconnected by a short time. The percentage speed regulating from no-load to full-load of the two stations are 3% and 4% respectively. If the load an each station is 250mW, find the power generation of each station and the tie-time power. The system frequency is 50Hz.

(08 Marks)

Module-4

- Derive the state space model for an isolated AGC system. (12 Marks)
 - Derive the equation that voltage at receiving end is dependent on reactive power in power (08 Marks) system.

- (06 Marks) Explain the different issue arises in implementation of AGC.
 - Explain how voltage control is achieved by using booster and phase shifting transformers. (06 Marks)
 - A 440V, 3-phase distribution feeder has a load of 75kW drawing a current of 130A. A capacitor rating 45KvAr is connected across the load. Determine the
 - i) Power factor and reactive load before compensation
 - ii) Power factor after compensation.

(08 Marks)

(06 Marks)

Module-5

- Derive the following
 - i) Reliability
 - System adequacy ii)
 - iii) System security
 - Discuss the factors affecting power system security. (07 Marks)
 - Explain the formulation and state estimate using linear least squares estimation. Also explain (07 Marks) the condition for deferability in least squares estimation.

- Explain the calculation of network linear sensitivity factors. (07 Marks) 10 With the help of flow chart, explain 1PIQ contingency selection procedure. (07 Marks)

 - Discuss the issues of state estimation. (06 Marks)