21EE42

Max. Marks: 100

ALO Note: Answer any FIVE full questions, choosing ONE full question from each module.

- 15, 16, 18) + d(24, 25, 26, 27, 28, 29, 30, 31) using Karnaugh map method.
 - Design a combinational logic circuit to output the 2's complement of a 4-but binary number
 - Simplify each output function using K-map and write reduced equations and draw the (12 Marks)

OR

- Find a minimal sum for the following Boolean function using Quine Mc Cluskey method 2 and prime implicant table reduction $f(a, b, c, d) = \Sigma(3, 4, 5, 7, 10, 12, 14, 15) + \phi(2)$.
 - Obtain the minimal sum using K-map for the following function $f(a, b, c, d) = \sum m(1, 2, 3, 5, 6, 7, 11, 12, 13, 14, 15)$. Find all the prime implicants and essential prime implicants. Draw the logic diagram.

Module-2

Implement full subtractor using a decoder and write the truth table. 3

(06 Marks)

(12 Marks)

Design even parity generator circuit for 4 bit I/P using multiplexer. b.

(08 Marks)

Write a note on 4-bit priority encoder. c.

(06 Marks)

Design a 2-bit comparator using gates. a.

(10 Marks)

- Explain how a full subtractor can be realized using two half subtractor and OR-Gate.
- (10 Marks)

- Draw the logic symbol of the edge triggered JK flip-flop. Obtain its characteristics equations and draw the timing diagram. (08 Marks)
 - b. Explain different types of triggering mechanism employed in flip-flops. (06 Marks)
 - Draw the logic circuit of D latch using only NAND gates and explain its operation.

(06 Marks)

- Explain how T-flip-flop can be converted into SR flipflop. 6 a. (07 Marks)
 - Write the truth table for the following circuit and show that it acts as a T-flip-flop.

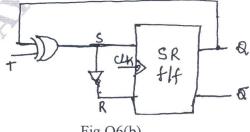


Fig Q6(b)

1 of 2

(07 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

ii) Combinational and c. Distinguish between i) Synchronous and Asynchronous circuits (06 Marks) sequential circuits.

Module-4

- Design a synchronous counter with sequence 0, 1, 3, 7, 6, 4, 0 using JK flip flop. (08 Marks)
 - Design a 4-bit binary ripple up counter using negative edge triggered JK f/f. (04 Marks) b. (08 Marks)
 - List the steps involved in the design of asynchronous counter.

Draw a 4 bit Johnson counter, its truth table and timing diagram. Explain its operation. a. (08 Marks)

(08 Marks)

Explain the operation of 4-bit bidirectional shift register. **b**.

List the applications of shift registers. C.

(04 Marks)

Module-5

- Distinguish between Mealy and Moore model with necessary block diagram. (08 Marks) 9
 - Analyze the synchronous circuit of the figure shown Q9(b) i) Write the excitation and output function ii) Form the excitation and state tables.

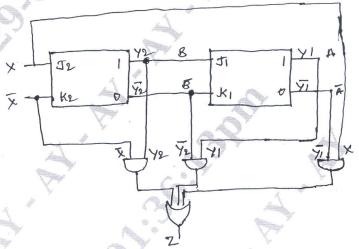


Fig Q9(b)

(12 Marks)

OR

Obtain the transition table for the state diagram shown below Fig Q10(a) and design a sequential circuit using JK flip-flop.

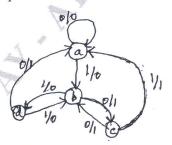


Fig Q10(a) State diagram

(08 Marks)

Explain the classification of semiconductor memories.

(04 Marks)

Discuss the following types of ROM memory i) EPROM iii) PROM iii) EEPROM.

(08 Marks)