CBCS SCHEME

BEE306A

Third Semester B.E./B.Tech. Degree Supplementary Examination, June/July 2024

Digital Logic Circuits

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	With a basic block diagram, explain the combinational logic circuit. List the various steps in designing the combinational logic circuit.	6	L1	CO1
	b.	Convert the given Boolean function in both canonical maxterm and minterm forms in decimal notation. i) $f = \overline{xy} + yz$ ii) $f = (\overline{a} + b)(b + \overline{c})$	8	L2	CO1
	c.	Simplify the given function using K-map and write the simplified SOP and POS expression. $y = f(a, b, c, d) = \pi M(0, 4, 5, 7, 8, 9, 11, 12, 13, 15)$	6	L2	CO1
		OR			
Q.2	a.	Using K-map method, obtain minimal SOP expression and implement the function using NAND gates. $X = f(a, b, c, d, e) = \sum m(1, 3, 4, 6, 9, 11, 12, 14, 17, 19, 20, 22, 25, 27, 28, 30).$	8	L3	CO1
	b.	Obtain all the prime implicants of the given Boolean function using Quine-Mcclurkey method and verify the result using K-map technique $f(a, b, c, d) = \sum m(0, 2, 3, 5, 8, 10, 11)$.	12	L3	CO1
		Module – 2			
Q.3	a.	Design a combinational logic circuit that will convert BCD to excess 3 code converter. Construct truth table and simplify each output equation using K-maps.	8	L3	CO2
	b.	Construct the truth table and design a binary full adder using NAND gates.	7 ·	L2	CO2
	c.	Realize 4:16 decoder using 3:8 decoder and write its truth table.	5	L2	CO2
	-	OR			
Q.4	a.	Design two bit magnitude comparator and draw its logic diagram.	10	L3	CO2
	b.	Implement the given function using 4:1 MUX. Use ab as select lines $y = f(p, q, r, s) = \sum m(0, 1, 2, 4, 6, 9, 12, 14)$.	5	L4	CO2
	c.	Draw the circuit and explain the operation of look ahead carry adder.	5	L2	CO2
		1 of 3			

]	BEE	306A
		Module – 3			
Q.5	a.	Explain the working of Master Slave JK flip flop. Draw its logic diagram, function table, symbol and timing diagram.	12	L2	CO3
	b.	Explain the operation of SR latch as switch debouncer. Draw its timing diagram.	8	L2	CO3
		OR			L
Q.6	a.	Obtain the characteristics equation of JK and D flip flop.	5	L2	CO3
	b.	Differentiate sequential logic circuit and combinational circuit.	5	L2	CO3
	c.	With a neat circuit diagram, explain the working of positive edge triggered D flip flop. Write its function table and symbol.	10	L2	CO3
		Module – 4		L	I.
Q.7	a.	With a neat logic diagram, explain the operation of 4 bit universal shift register using D-flipflop. Write the mode control table of universal shift register.	10	L2	CO
	b.	Design a synchronous counter for 5421 code sequencer using positive edge triggered D flip flop with minimal combinational circuits.	10	L4	CO
		OR	1		1
Q.8	a.	Design 4 bit binary ripple up counter using negative edge triggered JK flip flops. Explain its operation, write its truth table and draw its timing diagram.	10	L4	CO
	b.	Design synchronous Mod-6 counter using clocked JK flip flop.	10	L4	CO
		Module – 5			
Q.9	a.	With relevant block diagram, explain Moore and Mealy model.	8	L2	CO
	b.	Construct a sequential logic circuit with single input x and single output Z by obtaining the state and excitation table for the given state diagram shown in Fig.Q.9(b) using JK flip flop.	12	L3	COS
		Fig.Q.9(b)			

Q.10					
Q.10	a.	For the given logic diagram shown in Fig.Q.10(a), derive the excitations output equations, write the next state equations, construct transition table and draw its state diagram. Fig.Q.10(a)	12	L3	CO5
	b.	Write short note on the following with suitable diagram:	8	L2	CO6
		i) ROM ii) PROM iii) Flash memory.	+		