

21CS51

Fifth Semester B.E. Degree Examination, June/July 2024 Automata Theory and Compiler Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define the following terminologies with appropriate examples and notations:
 - i) Kleene star

 - ii) Alphabet iii) Language
- iv) Power of an alphabet
- (08 Marks)

- b. Design a DFA to accept the language
 - $L = \{ w \mid w \text{ is of even length and begins with } 01 \}$

(07 Marks)

c. Explain briefly phases of a compiler.

(05 Marks)

- Define with terminologies different ways of representing Automata considering an example. 2 (08 Marks)
 - Consider the following ε -NFA Fig.Q2(b).

Fig.Q2(b)

- i) Compute the ε-Closure of each state
- ii) Convert the automation to a DFA (07 Marks)
- c. Explain in brief commonly used compiler construction tools.

(05 Marks)

Module-2

- Write regular expression (RE) for the following Languages. 3
 - i) The set of all strings such that the number of 0's is ODD. $\Sigma = \{0, 1\}$
 - ii) Every ODD length string begins with 11. $\Sigma = \{0, 1\}$

(08 Marks)

b. Convert the following FSM into RE using state elimination technique. Refer Table Q3(b).

pitti	δ	0	1
	$\rightarrow q_1$	q_2	q_1
	q_2	q_2	Q4
>	*q3	q ₄	q_2
	*q4	q_4	q_1

Table Q3(b)

(07 Marks)

- Describe the languages denoted by the following regular expressions:

 - i) $a.(a+b)^*.b$ ii) $(a+b)^*.a.(a+b)(a+b)$

(05 Marks)

- Write Regular Expressions for the following languages:
 - i) All strings of lowercase letters that contain the five vowels in order.
 - ii) All the strings of a's and b's that contain the substring abb.

b. Convert the following DFA in Fig.Q4(b) to a Regular Expression using Kleene's theorem.

Fig.Q4(b)

(07 Marks)

Explain with neat diagram interactions between the lexical analyzer and the parser. (05 Marks)

Module-3

- Design Context-Free Grammars (CFG) for the following languages:
 - i) $L = \{a^i b^j c^k | i = j = k \}$
 - ii) The set of all strings of 0's and 1's where the number of 0's is equal to the number (08 Marks)
 - b. Given the Context-Free Grammar below:

$$S \rightarrow AS \mid \epsilon$$

 $A \rightarrow aa \mid ab \mid ba \mid bb$

Give leftmost and rightmost derivations and parse tree for the following strings:

- ii) baabab i) aaba
- iii) aaabbb

(06 Marks)

c. Construct the top-down parse tree for string w = id + id * id by using grammar given below:

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' \mid \varepsilon$

 $T \rightarrow FT'$

 $T' \rightarrow *FT'$

 $F \rightarrow (E) \mid id$

(06 Marks)

Remove ambiguity from the Grammar given below:

 $S \rightarrow aSb$

 $S \rightarrow aaSb$

 $S \rightarrow \epsilon$

(08 Marks)

b. Consider the Context - Free Grammar given below

 $S \rightarrow aB \mid bA$

 $A \rightarrow a \mid aS \mid bAA$

 $B \rightarrow b \mid bS \mid aBB$

The string w = 'aaabbabbba' and find

- i) Left-most derivation ii) Right-most derivation iii) Parse-tree

(06 Marks)

c. Explain the role of Parser in the compiler model.

(06 Marks)

Module-4

Design PDA to accept the language

$$L = \{WcW^{R} \mid W \in \{a, b\}^*\}$$

(10 Marks)

Write ID for W = 'bacab' b. Construct bottom-up parse tree for the following input strings by considering grammar given below:

 $E \rightarrow E + T \mid T$

 $T \rightarrow T * F \mid F$

 $F \rightarrow (E)$ id

$$W_1 = id * id$$
 $W_2 = id$

(10 Marks)

OR

Design a ND-PDA to accept the language

$$L = \{ a^m b^n \mid m \neq n, n, m > 0 \}$$

and write ID for W = aaabb

(10 Marks)

b. Explain LR – Parsing algorithm in detail.

(10 Marks)

Module-5

9 a. Design Turing Machine for the language

 $L = \{ a^i b^i | i > 0 \}$

Write ID for string W = "aabb"

(10 Marks)

- b. Write a short note on the following topics:
 - i) Recursive Languages
- ii) Universal Turing Machines

(10 Marks)

OR

10 a. Construct Direct Acyclic Graph (DAG) and corresponding three address code for the following expressions:

i) a + a * (b - c) + (b - c) * d

ii) ((x + y) - ((x + y) * (x - y))) + ((x + y) * (x - y))

(10 Marks)

- b. Write a short note on the following:
 - i) Multitape Turing Machine
 - ii) Non-Deterministic Turing Machine

(10 Marks)

4