BCS405A

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Discrete Mathematical Structures

3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Define tautology. Prove that for any propositions p, q, r the compound proposition. $[(p \land \exists q) \to r] \to [p \to (q \lor r)] \text{is a tautology}$	06	L2	CO1
	b.	Test whether the following is a valid argument: If Ram studies then he will pass 12 th . If Ram passes 12 th then his father gifts him a bike. If Ram doesn't play video game then he will pass 12 th . Ram did not get a bike. ∴ Ram played video game.	07	L3	CO1
	c.	 Give direct proofs of the statements: i) If k and l are odd then k + l is even. ii) If k and l are odd then kl is odd. 	07	L2	C01
		OR			
Q.2	a.	Define (i) Proposition (ii) Open statement (iii) Quantifiers	06	L2	CO1
	b.	Using the laws of logic, prove the following logical equivalence: $[(1p \lor 1q) \land (F_0 \lor p) \land p] \Leftrightarrow p \land 1q$	07	L2	CO1
	c.	Write the following statement in symbolic form and find its negation: "If all triangles are right angled then no triangle is equilateral".	07	L2	CO1
		Module – 2			
Q.3	a.	Prove by using mathematical induction. $1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$	06	L2	CO1
	b.	How many words can be made with or without meaning from the letters of the word "STATISTICS"? In how many of these a and c are adjacent? In how many vowels are together?	07	L3	CO2
	c.	Find the coefficient of x^3y^8 in the expansion of $(2x - y)^{11}$.	07	L2	CO2
0.1	1	OR	0.6	T.0	000
Q.4	a.	Obtain the recursive definition for the sequence in each of the following cases: (i) $a_n = 5n$ (ii) $a_n = 3n + 7$ (iii) $a_n = n^2$ (iv) $a_n = 2 - (-1)^n$ A woman has 11 close relations and wishes to invite 5 of them to dinner. In	06	L2	CO2
	b.	A woman has 11 close relations and wishes to invite 5 of them to dinner. In how many ways can she invite them if (i) there is no restriction on her choice. (ii) 2 persons will not attend separately (iii) 2 persons will not attend together.	07	L3	CO2
	c.	In how many ways can we distribute 7 apples and 5 oranges among 3 children such that each child gets at least one apple and one orange?	07	L3	CO2

				DCS	403A
	_	Module – 3	_		
Q.5	a.	State pigeon hole principle. Using pigeon hole principle find the minimum	06	L3	CO3
		number of persons chosen so that atleast 5 of them will have their birthday			
		in the same month.			
	b.	Let $A = \{a, b, c, d\}$ and $B = \{1, 2, 3, 4, 5\}$. Find the number of 1-1	07	L2	CO3
		functions and onto functions from (i) A to B (ii) B to A			
	c.	Let A = $\{1, 2, 3, 4, 5\}$. Define a relation R on A × A by (x_1, y_1) R (x_2, y_2)	07	·L2	CO3
		iff $x_1 + y_1 = x_2 + y_2$.			
		(i) Verify that R is an equivalence relation			
		(ii) Determine the equivalence class of [(2, 4)]			
	•	OR			
Q.6	a.	Consider the functions f and g from R to R defined by $f(x) = 2x + 5$ and	06	L2	CO3
		$g(x) = \frac{1}{2}(x-5)$. Prove that g is inverse of f.			
	b.	Let $A = \{1, 2, 3, 4\}$ and R be the relation on A defined by xRy if and only	07	L2	CO3
		if $x < y$. Write down R as a set of ordered pairs. Write the relation matrix			000
		and draw the digraph. List out the in degrees and out degrees of every			
		vertex.			
	c.	Let $A = \{1, 2, 3, 6, 9, 12, 18\}$ and define R on A by xRy iff 'x divides y'.	07	L2	CO3
		Prove that (A, R) is a POSET. Draw the Hasse diagram for (A, R).	0,		003
		Module – 4			
Q.7	a.	How many integers between 1 and 300 (inclusive) are divisible by	06	L3	CO4
		(i) at least one of 5, 6 or 8. (ii) None of 5, 6 and 8.	00	LUS	004
	b.	At a restaurant 10 men handover their umbrellas to the receptionist, In how	07	L3	CO4
		many ways can their umbrellas be returned so that (i) no man receives his	07	LIS	C04
		own umbrella. (ii) atleast one gets his own umbrella. (iii) atleast two gets			
		their own umbrellas.			
	c.	The number of virus affected files in a system is 1000 (to start with) and	07	L3	CO4
		this increases by 250% every 2 hours. Use a recurrence relation to	07	LS	C04
		determine the number of virus affected files in the system after 12 hours.			
		OR			
Q.8	a.	In how many ways one can arrange the letters of the word	06	L3	CO4
		"CORRESPONDENTS" so that there are (i) no pair (ii) at least 2 pairs of	00	LIJ	C04
		consecutive identical letters.			
	b.	4 persons P ₁ , P ₂ , P ₃ , P ₄ who arrive late for a dinner party find that only	07	L3	CO4
		one chair at each of five tables T_1 , T_2 , T_3 , T_4 and T_5 is vacant. P_1 will not	07	LS	CO4
		sit at T_1 or T_2 . P_2 will not sit at T_2 . P_3 will not sit at T_3 or T_4 . P_4 will not sit			
		at T_4 or T_5 . Find the number of ways they can occupy the vacant chairs.			
	c.	Solve the recurrence relation	07	1.2	CO4
			07	L2	CO4
		$a_n - 6a_{n-1} + 9a_{n-2} = 0$ for $n \ge 2$ with $a_0 = 5$, $a_1 = 12$. Module - 5			
Q.9	a.	If * is an operation on Z defined by $xy = x + y + 1$, prove that $(Z, *)$ is an	06	1.2	COF
Q.J	и.	abelian group.	06	L2	CO5
	b.		0.5	T. 0	00.
		Explain Klein-4 group with example.	07	L2	CO5
	c.	State and prove Lagrange's theorem.	07	L2	CO5
Q.10	a.	OR Prove that intersection of two subgroups of a group G is also a subgroup of	0.0	Ta	00=
V.10	a.	Prove that intersection of two subgroups of a group G is also a subgroup of G.	06	L2	CO ₅
	h		0=	TA	00-
	b.	Prove that $(Z_4, +)$ is a cyclic group. Find all its generators.	07	L2	CO5
	c.	Let $G = S_4$ for $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$	07	L3	CO ₅
		(2 3 4 1)			
		Find the subgroup $H = \langle \alpha \rangle$ determine the left cosets of H in G.			
