

21CS42

Fourth Semester B.E. Degree Examination, June/July 2024 Design and Analysis of Algorithms

ime: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define algorithm. Explain the following asymptotic notations:

i) Big On

- ii) Big Omega
- iii) Big Theta

(08 Marks)

- b. Design a non-recursive algorithm to find maximum element in an array of n elements. Give the Mathematical Analysis. (08 Marks)
- c. Define time and space complexity.

(04 Marks)

OR

- Design an algorithm for performing sequential search and compute Best, Worst and Average case efficiency.

 (08 Marks)
 - b. Write an algorithm to find the uniqueness of element an array and give mathematical analysis of this non recursive algorithm with steps. (08 Marks)
 - c. List and explain basic asymptotic efficiency classes,

(04 Marks)

Module-2

- 3 a. Illustrate the tracing of the Quick Sort algorithm for the following set of numbers
 - 5, 3, 1, 9, 8, 2, 4, 7 (10 Marks)
 Apply the topological sorting algorithm for the following graph shown in Fig.Q3(b). Find
 - the topological sequence.

Fig.Q3(b)

(10 Marks)

(10 Marks)

OR

- 4 a. Write a C++/JAVA program for Merge Sort. Analyze its efficiency and apply the same to sort the following numbers: 4, 9, 0, -1, 6, 8, 9, 2, 3, 12. (10 Marks)
 - b. Write a recursive algorithm for Binary Search and also bring out its efficiency.

Module-3

5 a. Apply greedy method to obtain an optimal solution to the knapsack problem given M = 60.

W = {5, 10, 20, 30, 40} P = {30, 20, 100, 90, 160}

Find total profit earned.

(10 Marks)

b. Apply single source shortest path algorithm to the following graph Fig.Q5(b). Assume vertex 'a' as source.

Fig.Q5(b)

(10 Marks)

OR

6 a. A message consisting of the character given in the table below has to be transmitted network in a secured manner.

Character	A	M	R	-
Probability	0.4	0.2	0.3	0.1

- i) Construct Huffman tree
- ii) Device Huffman codes for the given characters
- iii) Encode the text : RAMA_RAMAR
- iv) Decode the text: 1000101

(10 Marks)

b. Find the optimal solution using greedy for the job sequencing with dead line problem with following values:

Job	J	J_2	J_3	J ₄	J ₅
Profit	10	3	33	11	40
Dead line	3	1	1	2	2

(10 Marks)

Module-4

- 7 a. Define a Multistage Graph. Give an example. Explain the technique of finding the minimum cost path in a multistage graph. (10 Marks)
 - b. Write Floyd's Algorithm and find all pair Shortest path for the given graph. [Refer Fig.Q7(b)]

Fig O7(b

(10 Marks)

OR

8 a. Apply the Dynamic Programming to solve travelling sales person problem for the following graph shown in Fig.Q8(a).

C	1	2	3	4
1	0	,10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

Fig.Q8(a)

(10 Marks)

b. Write Horspool Algorithm for string matching. Trace the algorithm to find the pattern "ELECTION" in the text.

"EDUCATION ONLY HELPS IN SELECTION."

(10 Marks)

Module-5

- 9 a. Construct the state-space tree for sum of subset problem given the following data: $W = \{3, 5, 6, 7\}$ and m = 15.
 - W = {3, 5, 6, 7} and m = 15.
 Write C++ / JAVA program to find all Hamiltonian cycles in a connected undirected Graph G of n vertices using backtracking principle.
 (10 Marks)

OR

10 a. Explain Branch and Bound concept. Apply Branch and Bound to the following instance of assignment problem.

	Job1	Job2	Job3	Job4
Person A	9	2	7	8
Person B	6	4	3	7
Person C	5	8	1	8
Person D	7	6	9	4

(10 Marks)

- b. Explain the following concepts:
 - i) Graph coloring problem with an example
 - ii) NP Complete Problem
 - iii) NP-Hard Class Problem

(10 Marks)