

Eighth Semester B.E. Degree Examination, June/July 2024 Pavement Design

s. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Briefly explain the Pavement Components and functions of components. (04 Marks)
 - b. Write comparison between Flexible and Rigid Pavement. (04 Marks)
 - c. Explain briefly Design factors to be considered in the design of pavement. (08 Marks)
- 2 a. List and briefly explain the assumptions and limitations of Bousinerq's theory. (08 Marks)
 - b. Design the thickness of a flexible pavement by Bunmister's two layer analysis for a wheel load of 40 kW and a tyre pressure of 0.5 MN/m². The modulus of elasticity of the pavement materials is 150 MN/m² and that of the subgrade is 30 MN/m². (08 Marks)

Module-2

- 3 a. What are the design factors considered in the design of pavement? Explain any three in detail. (08 Marks)
 - b. Calculate the design repetition for 20 years period for various wheel loads equivalent to 22.68kN. Wheel load using the following data on a four lane road. (08 Marks)

Load kN	22.68	27.22	31.75	40.82	45.36	49.90	54.43
Volume per day	30	25	20	15	10	5	1

4 a. Explain the significance of ESWL in pavement design.

- (08 Marks)
- b. It is proposed to widen an existing 4 lane NH section to 3 lane dual carriage way road. Design the pavement for new carriage way with following data:

Initial traffic in both directions = 4932 CVPD; Construction period = 20 months

Design life = 15 years; Design CBR of soil = 7%

Traffic growth rate = 8%; VDF = 4.5.

Land distribution factor = 75% (0.75)

Pavement Design Catalogue

Plate 2- Recommended Designs for Traffic Range 10-150 msa

CBR 7%								
Cumulative traffic	Total pavement	Pavement Composition						
(msa)	thickness (mm)	Bituminous		Granular base and sub-				
		Surfacing		base (mm)				
		BC	DBM					
		(mm)	(mm)					
10	580	40	60					
20	610	40	90					
30	630	40	110	Base = 250				
50	650	40	130					
100	575	50	145	Sub-base = 230				
150	695	50	165	,				

(08 Marks)

Module-3

- 5 a. Explain typical failures of flexible pavement.

 b. Briefly explain the various maintenance works of bituminous surfaces.

 (08 Marks)

 (08 Marks)
- 6 Write notes on:
 - a. Roughness measurement
 b. Falling Weight Deflectometer
 c. Benkelman beam deflection method
 (04 Marks)
 (08 Marks)

Module-4

- 7 a. Write Westergaard's load stress equations at critical regions and discuss critical combination of stresses. (08 Marks)
 - b. Explain IRC recommendation's is the design of dowel bar, tiebar and RCC in pavements.

 (08 Marks)
- 8 a. Calculate wheel load stresses at interior, edge and corners using Westergaard's equations for wheel load = 51kN, tyre pressure = 0.75N/mm², E = 30kN/mm², K = 0.08N/mm² slab thickness 250mm. (08 Marks)
 - b. A cement concrete pavement has a thickness of 20cm on a 2 lane road of 7.5m with a longitudinal joint along the centre. Design the dimensions and spacing of tie bars for the following data. Working stress in tension $S_s=1400~kg/cm^2$ density of concrete $W=2500kg/m^3$, friction coefficient 1.5. Allowable bond stress in concrete, $Sb=24.6kg/cm^2$. (08 Marks)

Module-5

- 9 a. What are the factors considered in design of rigid pavements? Explain any three factors.
 (08 Marks)
 - b. List the typical failures in rigid pavements and explain any three of them. (08 Marks)
- 10 a. With sketches, describe the various types of joints and their requirements, in rigid pavements. (08 Marks)
 - b. Determine spacing between contraction joints for a 3.5m slab width having thickness of 200mm, friction 1.5, for the following two conditions:
 - i) Planche cement concrete, allowable Sc = 0.08 N/mm²
 - ii) Reinforced cement concrete, 10mm diameter bars at 0.3m spacing. (08 Marks)

* * * * *