

18CV43

Fourth Semester B.E. Degree Examination, June/July 2024 Applied Hydraulics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. State and explain Buckingham's π theorem. Why this theorem is considered superior over the Rayleigh's method. (06 Marks)
 - b. Define the following non-dimensionless models:

(i) Reynold's model

(ii) Froude's model

(04 Marks)

c. The drag force exerted by a flowing fluid on a solid body depends upon the length of the body L, velocity V, density of fluid ρ , and viscosity μ . Find the expression for the drag force using Buckingham's π theorem. (10 Marks)

OR

2 a. Explain the term dimensionally homogenous equation with an example.

(04 Marks)

b. Explain Metacentre and Metacentric height with sketches.

(08 Marks)

c. A solid cylinder of diameter 4.0 m has a height of 4m. Find the metacentric height of cylinder if specific gravity of the material of cylinder = 0.6 and it is floating in water with its axis vertical. State whether the equilibrium is stable or unstable.

(08 Marks)

Module-2

- 3 a. Explain the terms: (i) Rapidly varied flow (ii) Gradually varied flow. Give examples with sketches. (10 Marks)
 - b. Explain most economical channel section. What is the general condition to be satisfied in such a case? Find the slope of the bed of a rectangular channel of width 5m when depth of water is 2m and rate of flow is given as $20 \text{ m}^3/\text{sec}$. Take Chezy's constant c = 50. (10 Marks)

OR

- 4 a. What is specific energy curve? Explain with a sketch. Derive expressions for critical depth and critical velocity in a rectangular channel. (10 Marks)
 - b. The discharge of water through a rectangular channel of width 8m is 15 m³/sec. When depth of flow of water is 1.2 m. Calculate;
 - (i) Specific energy of the flowing water
 - (ii) Critical depth and critical velocity IV value of minimum specific energy. (10 Marks)

Module-3

- 5 a. Define the term Afflux and Backwater curve. Prove that the length of backwater curve is given by $L = \frac{E_2 E_1}{i_b i_e}$. (10 Marks)
 - b. A hydraulic jump forms at the downstream end of spillway carrying 17.93 m³/sec discharge. If the depth before jump is 0.8 m, determine the depth after the jump and energy loss.

(10 Marks)

OR

6 a. Define hydraulic jump. Derive an expression for depth of hydraulic jump. (10 Marks)

b. Find the slope of the free water surface in a rectangular channel of width 20 m having depth of flow 5m. The discharge through the channel is $50 \text{ m}^3/\text{sec}$. The bed of the channel is having slope of 1 in 4000. Take the value of Chezy's constant c = 60. (10 Marks)

Module-4

7 a. State Impulse-Momentum equation. Derive an expression for the force exerted by a jet of water on a fixed vertical plate in the direction of the jet. (10 Marks)

b. A jet of water having a velocity of 20 m/sec strikes a curved vane which is moving with a velocity of 10 m/sec. The jet strikes makes an angle of 20°. With the direction of motion of vane at inlet and leaves at an angle of 130° to the direction of motion of vane an outlet. Calculate: (i) Vane angles, so that the water enters and leaves the vane without shock

(ii) Work done per second per unit weight if water striking the vane per second. (10 Marks)

OR

8 a. Sketch and explain general layout of a hydro-electric plant.

(06 Marks)

b. Explain in detail, how hydraulic turbines are classified.

(04 Marks)

A pelton wheel is to be designed for the following specifications: Shaft power = 735 KW, head = 200 m, speed = 600 rpm, overall efficiency = 0.75, the jet diameter not to exceed the length of wheel diameter, $C_V = 0.958$, speed ratio = 0.5. Determine:

(i) Wheel diameter

(ii) Number of jets required

(iii) Diameter of jet

(iv) Number of buckets

(10 Marks)

Module-5

9 a. Sketch and explain Francis Turbine.

(10 Marks)

- b. A Kaplan turbine working under a head of 20 m develops 11772 K.Watt shaft power. The outer diameter of runner is 3.5 m and hub diameter 1.75 m. The guide blade angle at the extreme edge of runner is 35°. The hydraulic and overall efficiency of the turbine are 88% and 84%. If the velocity of whirl is zero at outlet, determine:
 - (i) Runner vane angles at inlet and outlet at the extreme edge of the runner
 - (ii) Speed of turbine

(10 Marks)

OR

a. With a neat sketch, explain the working of a single stage centrifugal pump. (10 Marks)

b. A centrifugal pump having overall efficiency 75% discharging water at the rate of 30 lit/sec through a pipe of 15 cm diameter and 125 m long. Calculate the power required to drive the pump if the water is lifted to a height of 25 m. Take f = 0.01. (10 Marks)

* * * * *