

Chemical Reaction Engineering

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. The rate of bimolecular reaction at 227°C is ten times the rate of 127°C. Find the activation energy of this reaction from Arrhenius law. (06 Marks)
 - b. Define the following:
 - i) Order and molecularity
- ii) Elementary and non elementary reaction
- iii) Law of mass action.

(06 Marks)

c. Explain Integral and differential method of analyzing the kinetic for constant volume system. (08 Marks)

OR

- 2 a. Derive an integrated rate equation for bimolecular irreversible 2^{nd} order reaction both interms of concentration and conversion. $(2A \rightarrow P)$, where $C_A = C_B$. (10 Marks)
 - b. After 8 min in a batch reactor reactant A ($C_{AO} = 1$ moles/lit) is 80% converted. After 18 min, the conversion is 90%. Find the rate equation to represent this reaction. (10 Marks)

Module-2

- 3 a. Derive the design equation for a steady state plug flow reactor both interms of concentration and conversion. (10 Marks)
 - b. 1 ℓpm of a liquid containing A and B flows into a mixed flow reactor (MFR) $[C_{AO}=0.1 mole/lit$ and $C_{BO}=0.01$ mole/lit] of volume 1 lit. The material reacts in a complex manner for which the stiochiometry is unknown. The outlet stream from the reactor contains A , B and C ($C_A=0.02 mole/lit$, $C_B=0.03$ mole/lit and $C_C=0.04$ mole/lit). Find the rate equation of A, B and C for the condition within the reactor. (10 Marks)

OR

- 4 a. Derive the design equation for batch reactor both interms of conversion and concentration with a graphical representation. (10 Marks)
 - b. A liquid stream of 1 mole/lit passes through 2 MFR's in series. The concentration of A in the exit of 1st reactor is 0.5 mole/lit. Find the concentration of exit stream of 2nd reactor if the

reaction is 2^{nd} order w.r.t $A\left(\frac{V_2}{V_1} = 2\right)$. (10 Marks)

Module-3

- 5 a. Explain the pulse experiment to idealize the non ideal reactor. (10 Marks)
 - b. With a neat sketch, explain the reasons for non ideality in the reactor operations. (06 Marks)
 - c. Write a brief note on characteristics of trach. (04 Marks)

OR

6 a. A first order liquid phase reaction, $A \rightarrow P$, $-r_A = KC_A$, where $K = 0.307 \text{ min}^{-1}$ is carried out in a reactor for which the results of pulse tracer test is given below. Calculate the conversion using ideal PFR, ideal MFR and tanks in series model. (12 Marks)

t, min	0	5	10	15	20	25	30	35
e _{pulse} g/lit	0	3	5	5	4	2	1	0

b. Derive an equation for Residence Time Distribution (RTD) in MFR

(08 Marks)

Module-4

a. Derive Michaelis – Menten equation stating all assumptions.

(10 Marks)

b. Determine M.M parameters V_{max} and K_m for the reaction

Urea + Urease
$$\stackrel{K_1}{\longleftarrow}$$
 [ES] $\stackrel{K_3}{\longrightarrow}$ NH₃ + CO₂ + Enzyme.

The rate equation is given below as a function of urea concentration.

Urea, [S] (Kmol/m³))	0.2	0.02	0.01	0.005	0.002
Rate, V (Kmol/m ³ , sec)	1.082	0.55	0.38	0.2	0.09

(10 Marks)

OF

8 a. What is Enzyme Inhibition? Explain competitive and non - competitive inhibition.

(12 Marks)

b. Explain any two methods for estimation of M - M parameters.

(08 Marks)

Module-5

- 9 a. Discuss about Monod model and Lue deKing Piret model of growth rate of micro organisms.

 (12 Marks)
 - b. Discuss in detail the thermal death kinetics of micro organisms.

(08 Marks)

OR

- 10 a. Write a note on the different medium requirement for fermentation process. (10 Marks)
 - b. Explain the objective of heating, holding and cooling operations of sterilization. (10 Marks)

* * * * *