

CBCS SCHEME

18AU32

hird Semester B.E. Degree Examination, June/July 2024

Engineering Thermodynamics

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Use of Thermodynamics Data Hand Book, Steam tables, Psychrometry chart are allowed.

Module-1

- 1 a. Define a thermodynamics system, cycle, process, property and thermal equilibrium.
 - (10 Marks)
 - b. Using zeroth law of thermodynamics, explain the temperature concept.

(10 Marks)

OF

- 2 a. Define work and heat. Mention the sign convention for both. Also give the comparison between them. (10 Marks)
 - b. Explain the following with sketch:
 - i) electrical work
 - ii) paddle wheel work

(10 Marks)

Module-2

- a. Explain unsteady flow process namely tank filling and tank emptying process with relation.
 - b. 50Kg/min enters the control volume of a steady flow system at 2 bars and 100°C and at elevation of 100m above the datum. The same mass leaves the control volume at 150m elevation with a pressure of 10 bars and temperature of 300°C. The entrance velocity is 2400m/min and exit velocity is 1200m/min. During the process 50000 kJ/hr of heat is transferred to the control volume and the rise in enthalpy is 8kJ/kg. Calculate the power developed. Also find the ratio of inlet to outlet diameter of pipe. (10 Marks)

OR

- 4 a. State Kelvin Planck's and Clausius statement of second law of Thermodynamic and prove that they are equivalent. (08 Marks)
 - b. The minimum power required to drive a heat pump which maintains a house of 20°C is 3kW. If the outside temperature is 3°C, estimate the amount of heat which the house loses per minute.

 (08 Marks)
 - c. Briefly explain PMM II and PMM I.

(04 Marks)

Module-3

5 a. Sketch and explain working of Carnot engine.

(10 Marks)

- b. A heat engine absorbs 200 kJ/s of heat at 227°C and rejects heat at 27°C. Three separate cases of heat rejection are reported.
 - i) 180 kJ/s heat rejected
 - ii) 120 kJ/s heat rejected
 - iii) 60 kJ/s heat rejected. Classify each cycle.

(10 Marks)

		OR	(0 < 7.0 - 1-0)
		With a neat diagram, explain P-V-T surface.	(06 Marks)
a		With a neat diagram, explain 1-v-1 surface. With a neat diagram, explain the working of throttling calorimeter. With a neat diagram, explain the working of throttling calorimeter.	(06 Marks)
b		With a neat diagram, explain the working a test on a combined separating and	throttling
C		With a neat diagram, explain the working of throttling calorineds. The following data were recorded in a test on a combined separating and	1
		calorimeter.	
		Pressure of steam sample	
		Pressure of steam at exit	
		Temperature of steam at exit = 150°C	
		Discharge from separating Calorimeter - 0.5 kg/illin	
		Discharge from throttling calorimeter - 0.3 kg/mm	(00 Mayles)
		Determine the dryness fraction of steam sampled.	(08 Marks)
		Determine the dryness has the	
		Module-4	compression
7	a.	With neat sketches (including T-S and p-h diagrams), explain vapour	(10 Marks)
1	a.		(10 Marks)
	1,	refrigeration system. What is a refrigerant? Explain the desirable properties of refrigerants.	(10 Marks)
	b.	What is a tenigerant.	į.
		OR	
		The conditions of atmospheric air is 40°C DBT and 40% RH. The air is conditions of atmospheric air is 200 m ³ /min find:	oled to 25°C
8	a.	The conditions of aumospheric and is 700 m ³ /min, find:	
		DBT. If the air supply to the system is 200 m ³ /min, find:	
		i) Heat removed from air per minute	
		ii) RH of air	(10 Marks)
		Take air pressure to be 1.01325 bar.	ain winter air
	b.	1 1 C A-motio diagram and applicate by containing	(10 Marks)
		conditioning system.	(20 2121
		Module-5	
		Derive the expression for the isothermal work done by a single state	reciprocating
9	a	Derive the expression for the isothermal volume	(12 Marks)
		compressor with and without clearance volume.	(08 Marks)
	b	Explain Multi-stage compression with sketch. Mention its advantages.	
		OP	
		OK	(10 Marks)
10	2	a. Explain with neat sketch, types of gas turbines.	(10 mana)
10		o. Write short notes on:	5 8
	L	i) Turbojet engine	(10 7/11)
		ii) Rocket propulsion.	(10 Marks)
		II) Rocket propulsion	

6