

OR

- a. Apply gram Schmidt orthogonalization process to the basis B = (1, 1, 1), (-1, 0, 1), (-1, 2, -1), (-1, 24 3)} of the inner product space R^3 to find an orthogonal basis of R^3 . Also find orthogonal basis of \mathbb{R}^3 . (10 Marks)
 - b. Find singular value decomposition of $A = \begin{vmatrix} -2 \end{vmatrix}$

(10 Marks)

Module-3

- a. Compute the partial derivative $\frac{\partial f}{\partial A}$ for the function f = Ax where $A \in R^{3x^2}$ and $x \in R^2$. 5 (07 Marks)
 - b. Consider $f(x_1, x_2) = x_1^2 + 2x_2$ where $x_1 = \sin t$ and $x_2 = \cos t$. find derivative of f with respect (06 Marks)
 - c. Obtain the gradient $\frac{df}{dx}$ for the function f(x) = Ax, $f(x) \in \mathbb{R}^{M}$, $A \in \mathbb{R}^{MXN}$, $x \in \mathbb{R}^{N}$. (07 Marks)

- a. Consider the linear model $y = \phi \ \theta$ wher $\theta \in \mathbb{R}^{D}$ is a parameter vector, $\phi \in \mathbb{R}^{NXD}$ are input 6 features and $y \in \mathbb{R}^{N}$ are corresponding observation we define least squares loss function :
 - $L(e) : || e ||^2, e(\theta) ; y \phi \theta.$ Find $\frac{\partial L}{\partial \theta}$. (06 Marks)

b. For the function
$$f(x) = \sqrt{x^2 + \exp(x^2) + \cos(x^2 + \exp(x^2))}$$
 find $\frac{\partial f}{\partial x}$. (07 Marks)

c. Consider the matrix $R \in \mathbb{R}^{MXN}$ and $f : \mathbb{R}^{MXN} \to \mathbb{R}^{NXN}$ with $f(R) = R^T R = K \in \mathbb{R}^{NXN}$ find gradient dK/dR. (07 Marks)

Module-4

- The probability that the noise level of a wide band amplifier will exceed 2dB is 0.05. Find 7 a. the probabilities that among 12 such amplifiers the noise level of :
 - i) One will exceed 2dB
 - ii) Atmost 2 will exceed 2dB
 - iii) Two or more will exceed 2dB.
 - b. Let X_1 and X_2 have the joint probability distribution :

x ₁ x ₂	0	1	Ż
0	0.1	0.4	0.1
1	0.2	0.2	0

- i) Find marginal distribution of x_1 and x_2
- ii) Find $P(x_1 + x_2 > 1)$
- iii) Find conditional probability distribution of x_1 given $x_2 = 1$. And x_1 and x_2 are Independent. (07 Marks)
- If x is a Poisson variate such that P(x = 2) = 9P(x = 4) + 90 P(X = 6). Find mean of x.

(07 Marks)

(06 Marks)

- a. The probabilities of X, Y, Z becoming manager are 4/9, 2/9 and 1/3 respectively. The probabilities that the bonus scheme will be introduced if X, Y, Z become managers are 3/10, 1/2, 4/5 respectively.
 (06 Marks)
 - i) What is the probability that bonus will be introduced
 - ii) If the bonus scheme is introduced, what is the probability that manger appointed is X?
 - b. Verify that the function P(x) defined by

8

 $P(x) = \begin{cases} e^{-x} & \text{for } x \ge 0\\ 0 & \text{for } x < 0 \end{cases}$ is a probability density function. Find the probability that

variable x having this density falls in the interval (1.5, 2.5). Also evaluate cumulative distribution function F(2.5). (07 Marks)

c. Let n random variables X_1, X_2, \ldots, X_n be independent and each have the same distribution with mean μ and variance σ^2 . Use the properties of expectation to show that the sample

mean \overline{X} has i) mean $\mu_{\overline{x}} = E(\overline{X}) = \mu$ ii) Variance $\sigma_{\overline{x}}^2 = Var(\overline{X}) = \frac{\sigma^2}{n}$. (07 Marks)

Module-5

9 a. Using Lagrange's multiplier method, find the stationary value of the function f(x, y, z) = x² y² z² subject to the conditions x² + y² + z² = a². (07 Marks)
b. Check whether the function f(x) = x log x is convex or not. (07 Marks)
c. Derive the dual linear program using Lagrange duality for the linear program min C^Tx, subject to Ax ≤ b, where A∈R^{m x d}, b∈R^m and C∈R^d. (06 Marks)

OR

- 10 a. Find local minimum using gradient descent for the function $f(x) = x_1^2 2 x_1 x_2 + 2x_2^2 + 2x_1$. (07 Marks)
 - b. Given x + y + z = a, find the maximum value of $x^m y^n z^p$. (07 Marks)
 - c. If f_1 and f_2 are two convex functions then show that $\alpha f_1(x) + \beta f_2(x)$ is also a convex function. (06 Marks)

3 of 3