22MBA24

Second Semester MBA Degree Examination, Dec.2023/Jan.2024 **Operations Research**

Time: 3 hrs.

UTE OF

ANGALO

Max. Marks: 100

Note: 1. Answer any FOUR full questions from Q.No.1 to Q.No.7. 2. Question No. 8 is compulsory.

3. M: Marks, L: Bloom's level, C: Course outcomes.

4. Use of Normal distribution table is permitted.

	ige.		M	L	C
Q.1	a.	List out the various phases of operation research.	03	L1	CO1
	b.	A publisher of text books is in the process of presenting a new book to the	07	L2	CO3
		market the book bind either cloth or hard paper. The each cloth binding			
		book contributes Rs.30 and each paper binding book contributed Rs.25			
		towards profit.			
		It takes 8 minutes to bind a cloth cover and 6 minutes to bind a paper back, the total time available for binding is 800 hours. After market survey, it is			
		predicted that the cloth cover sales will be atleast 2000 copies but the paper			
. 10		back will be atleast 5000 copies, but the paper back will be atleast 5000		5 1 4	
1 100,		copies. Formulate the above problem in LPP.	10	L1	CO1
· ·	c.	Enumerate the application of operations research.	10	LI	COI
			03	L2	C01
Q.2	a.	What is linear programming?	03	L3	CO3
	b.	From the following game by using minimax and maximin whose pay of	U/	LS	COS
	a	matrix given below also find value of game. Does the game have a saddle	1.5		1181
		point? Player B	No.C		
		Player A B ₁ B ₂ B ₃ B ₄ B ₅		S 10	25
	, s	A_1 -2 0 0 5 3			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		A ₃ -4 -3 0 -2 6			
		A ₄ 5 3 -4 2 6		8	1
1	c.	$Minimize z = 2x_1 + 3x_2$	10	L3	CO3
				1 10	
		Subject to the constraints: (i) $x_1 + x_2 \le 30$ (ii) $x_2 \ge 3$ (iv) $0 \le x_1 \le 20$		2 2	9 13
	Ass	(v) $x_1 - x_2 \ge 0$ and $x_1, x_2 \ge 0$	1		
77	V			<u></u>	
			0.2	12	CO1
Q.3	a.	What do you understand by Decision Tree?	03	L3 L2	CO3
	b.	Determine the initial basic feasible solution for the following transportation	0/	LZ	COS
		problem using Vogel Approximation Model (VAM).	11.	1 - 1	2 2 2
	74	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	18 "	$\begin{bmatrix} S_1 \\ C \end{bmatrix} = \begin{bmatrix} 2 & 3 & 11 & 7 & 6 \\ C & C & C \end{bmatrix}$		2 O	
	To g	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	E .		
		S ₃ 5 8 3 2 10 Demand 7 5 3 2 17		(2)	
	-	Demand 7 7 5 5 -	10	L2	CO3
	c.	Briefly discuss the Operations Research models.	10	112	100

		Wil at any the objectives of Game Theory?		03	L3	CO3
2.4	a.	What are the objectives of Game Theory? In a game of matching coins Player-A wins Rs.8 if bot	h the coins shows	07	L3	CO3
	b.	In a game of matching coins Player-A wills Rs.6 if both	200 00		17 TO	
	25	heads and Rs.1 if both are tails. Player-B wins Rs.3 who	D Find the hest	8 9-00 A27	97 97	
		match given the choice of being Player-A or Player	D. I'llid the best	11.0	(4.0)	
	5: 50 pt	strategies and value of the game.	·	10	L2	CO3
A STATE OF	c.	Determine the initial basic feasible solutions to the follow	ving transportation	10	LL	COS
		problem by using (i) NWCM (ii) LCM.			6	
		Destination D ₁ D ₂ D ₃ Supply		- 34.1		
	N. s	Source		And the	ist sites	
	81	S_1 6 4 1 50	V.			2 T S
		$S_2 \ 3 \ 8 \ 7 \ 40$			Maria.	
	18.0	S ₃ 4 4 2 60				1 in its
	(a)	Demand 20 95 35		-		8
	. š.:	Domand	X.			8 1 3
			4			
W. St.		1 1 1 transportation problem	m? How to solve	03	L2	CO1
Q.5	a.	What is meant by unbalanced transportation problem	II: 110W to 501VC	0.5		
	light .	unbalanced transportation problem?	ha to be performed	07	L2	CO3
	b.	A department of a company has 5 employees with 5 jo	07	LIE	COS	
	Sept.	the time (in hours) that each man takes to perform each	Job is given in the	tel sud to		
		effectiveness matrix.			2.4	
		Employees				B B 100
		I II III IV V				
		A 10 5 13 15 16				
	100	B 3 9 18 13 6			1	
		Jobs C 10 7 2 2 2				N 51 504
41.7		D 7 11 9 7 12	Ty	1	100	
		E 7 9 10 4 12			18 19	(14)
		How should the jobs be allocated one per employee, so	as to maximize the	3		
		- 3	6 Y			
5.4	c.	a 10	L4	CO		
	· .	Listed in the table are the activities and sequencir maintenance job in the heat exchangers in a refinery.			1 2	
		Activity Description	Predecessor			-
		Activity Description	Activity	9		
	70 S	A Dismantle pipe connections	_			15.
4	ξ.	B Dismantle pipe connections B Dismantle heats, closure and floting front	A			
			В			
	e Library	C Remove tube bundle	В	ha ha		
		D Clean Bolts				, all the
	1 1 A	E Clean heater and floating head front	В			
	0	F Clean tube bundle	C	a. J. e. c		
	IX	G Clean shell	С			
		H Replace tube bundle	k, g			
		I Prepare shell pressure test	D, E, H			
		J Prepare tube pressure test and reassemble	I			
		Draw a network diagram of activities for the project.				
						Single)
06		Define PERT & CPM.		3	L4	CO
Q.6	a.			7		
(Print	b	Describe the phases of project management.		-1-	1	

Piv 3-300 a	c. Solve the following transportation problem, using LCM for IBFS and use							S and use	10	L3	CO3		
		modified distribution method to check, whether solution is optimal or not. Destination											
				D_1	D ₂	D_3	Supply	1	74 V				
		Sources	S ₁	8	6	10	300						
			S_2	12	16	10	400	A					
			S_3	14	10	12	300						
			Demand	450	150	200							
		Part C	10.00			5 Ka **	A						
Q.7	a.	What do y	ou unders	tand b	y sad	dle poi	nt?				03	L1	CO1
	b.	Find the	optimal str	ategy	and v	alue o	f the gan	ne using	dominan	ce rule for	07	L3	CO3
			ing game:		Min and A B Albandaria		W	1	4				
						B_1	B_2 B_3						
					A		6 8						
					A		-3 4						
(CALC)	Har. Date				A		-3 4	1	1 1 1 year 12 - 17	Att day 1 sele	10	L1	CO2
	c.	Describe	the charact	eristic	s of c	peration	ons resea	rch.	*		10	LI	002
2 1 1			1 (0	1000							20	L3	CO3
Q.8		Case Stud	ly (Compu	Isory)	:			4			7	344	MAG
		Calva th	trangnor	otion	wher	unia	ne transi	ortation	cost. de	mand and			
		Solve the transporation when unique transportation cost, demand and								- 7		7.53	
200	T.	supply is given below. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
100		Aı	$\begin{array}{c c} D_1 & D_2 \\ \hline 6 & 1 \end{array}$	9	3	70	-5///		45				
		A ₂	11 5	2	8	65	7						
	G _N N	A ₃	10 12	4	7	70	(X		**************************************				1 2 5
	in the	Demand		50	45		205	-6â	3	4	4		
		Domain		A		215		4	*			1 3 3	
1			41	9.	7	2		• /		V			