

USN

17AE/AS35

Third Semester B.E. Degree Examination, Dec.2023/Jan.2024 Mechanics of Fluids

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain the terms:

(i) Specific weight

(ii) Specific gravity

(iii) Viscosity

(iv) Surface tension

(v) Buoyancy

(10 Marks)

b. Explain the phenomenon of capillarity. Obtain an expression for capillary rise and fall.

(10 Marks)

OR

2 a. Derive an expression for hydrostatic force on an inclined submerged plane surface and depth of centre of pressure. (10 Marks)

b. Calculate the capillary rise in a glass tube of 2.5 mm diameter when immersed vertically in (i) water and (ii) mercury. Take surface tensions $\sigma = 0.0725$ N/m for water and $\sigma = 0.52$ N/m for mercury in contact with air. The specific gravity for mercury is given as 13.6 and angle of contact = 130°. (05 Marks)

C. A differential manometer is connected to the two points A and B as shown in Fig.Q2(c). At B air pressure is 9.81 N/cm² (abs), find the absolute pressure at A.

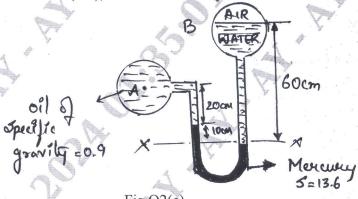


Fig.Q2(c)

(05 Marks)

Module-2

- 3 a. Derive the general three-dimensional continuity equation and then reduce it to continuity equation for steady, two dimensional in compressible flow. (10 Marks)
 - b. Derive the Navier-Stokes equation by control volume approach.

(08 Marks)

c. Mention the applications of continuity, momentum and energy equations.

(02 Marks)

OR

- 4 a. At point P(0.5, 1) is situated in the flow field of a doublet of strength 5m²/s. Calculate the velocity at this point and also the value of the stream function. (10 Marks)
 - b. Show that the stream lines and equipotential lines are orthogonal to each other. (05 Marks)
 - c. Obtain an equation of stream function and potential function. Draw streamline and potential lines for source flow. (05 Marks)

Module-3

- 5 a. Derive Euler's equation of motion for ideal fluids and hence deduce Bernoulli's equation of motion. State the assumption made. (10 Marks)
 - b. A horizontal venturimeter with inlet diameter 20 cm and the throat diameter 10 cm is used to measure the flow of water. The pressure at inlet is 17.658 N/cm^2 and the vacuum pressure at the throat is 30 cm of mercury. Find the discharge of water through venturimeter. Take $C_d = 0.98$.

OR

6 a. Using Buckingham's π - theorem, show that the velocity through a circular orifice is given by $V = \sqrt{2gH} \phi \left[\frac{D}{H}, \frac{\mu}{\rho VH} \right]$ where H is the heading causing flow, D is the diameter of the

orifice, μ is coefficient of viscosity, ρ is the mass density and g is acceleration due to gravity.

b. The efficiency η of a fan depends on the density ρ, the dynamic viscosity μ of the fluid, the angular velocity ω, diameter 'D' of the rotor and discharge Q. Express η in terms of dimensionless parameters.

Module-4

- 7 a. Derive the expression for the following:
 - (i) Displacement thickness (δ^*)
 - (ii) Momentum thickness (θ)

(iii) Energy thickness (δ^{**})

(15 Marks)

b. With a neat sketch, briefly explain boundary layer theory.

(05 Marks)

OR

8 a. For the velocity profile for laminar boundary layer flows is given as $\frac{u}{U} = 2(y/\delta) - (y/\delta)^2$

find an expression for boundary layer thickness (δ), shear stress (τ_0) and coefficient of drag (C_D) in terms of Reynold number. (15 Marks)

b. With a neat sketch, explain the airfoil characteristics.

(05 Marks)

Module-5

- 9 a. Derive an expression for:
 - (i) Velocity of sound in terms of Bulk modulus
 - (ii) Velocity of sound in isothermal process

(iii) Velocity of sound for adiabatic process (12 Marks)

b. Find the Mach number when an aeroplane is flying at 1100 km/hr through still air having a pressure of 7 N/cm^2 and temperature -5°C . Wind velocity may be taken as zero. Take R = 287.14 J/kgK. Calculate the pressure, temperature and density of air at stagnation point on the nose of the plane. Take K = 1.4. (08 Marks)

OR

- 10 a. Drive Bernoulli's equation for compressible flow undergoing isothermal and adiabatic process. (10 Marks)
 - b. With a neat sketch, explain the propagation of pressure waves in a compressible fluid.

 Define Mach cone, Mach number and Mach angle. (10 Marks)

* * * * *