CBCS SCHEME

USN BAE/BAS303

Third Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Fluid Mechanics

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

	-		,		
		Module – 1	M	L	C
Q.1	a.	State Newton's law of viscosity and explain the types of fluid based on Newton's law with suitable sketch.	6	L2	CO1
8	b.	Calculate the dynamic viscosity of an oil, which is used for lubrication between a square plate of size $0.8m \times 0.8m$ and an inclined plane with angle of inclination 30° as shown in Fig. Q1 (b). The weight of square plate is 300 N and it slides down the inclined plane with a uniform velocity of 0.3 m/s. Thickness of oil film is 1.5 mm.	6	L3	CO1
	c.	Fig. Q1 (b) Explain surface tension with a sketch and obtain the expression surface tension on a following conditions: (i) Liquid droplet (ii) Liquid jet	8	L2	CO1
-					
Q.2	a.	State and prove Pascal's law with a neat sketch.	8	L2	CO1
22	b.	A hydraulic press has a ram of 20 cm diameter and a plunger of 3 cm diameter and it is used to lift a weight of 30 kN. Find the force required at the plunger.	6	L3	CO1
	c.	Explain the following terms with a help of sketch: (i) Absolute pressure. (ii) Gauge pressure. (iii) Vacuum pressure.	6	L2	CO1
		Module – 2			
Q.3	a.	List and explain the types of fluid flow.	10	L2	CO2
	b.	A 30 cm diameter pipe, conveying water branches into two pipes of diameters 20 cm and 15 cm. If the average velocity in 30 cm pipe is 2.5 m/sec. Find the discharge in 30 cm pipe. Also find the velocity in 15 cm pipe if the average velocity in 20 cm diameter pipe is 2 m/s.	10	L3	CO2
		OR			
Q.4	a.	Obtain the expression for Navier-stokes equation using momentum equation.	12	L2	CO2
	b.	For an incompressible flow, the velocity potential components is given by, $u = \left(\frac{y^3}{3}\right) + (2x) - (x^2y); v = (xy^2) - (2y) - \left(\frac{x^3}{3}\right)$ Obtain the expression for stream function and velocity potential.	8	L3	CO2
		1 of 2	L		

		Module – 3			
Q.5	a.	Obtain Euler's equation of motion and obtain the Bernoulli's equation from that.	12	L2	CO3
	b.	A pipe of diameter 400 mm carries a water at a velocity of 25 m/s. The pressure at the points A and B are given as 29.43 N/cm² and 22.563 N/cm² respectively. The Datum head at A and B are 28 m and 30 m respectively. Find the loss of head between A and B.	8	L3	CO3
		OR			
Q.6	a.	An aircraft is flying with a propeller engine. The thrust developed by a propeller 'T' depends on the angular velocity 'W', speed of aircraft 'V' diameter of propeller 'd', dynamic viscosity ' μ ', density of air ' ρ ', and speed of sound 'a'. Obtain the thrust developed by a propeller using Buckingham's π -theorem. (Take (D, V, ρ) as repeating variable).	12	L3	CO3
	b.	Explain about types of similarities in the model analysis and write the expressions.	8	L2	CO3
		Module – 4	4.0		~~
Q.7	a.	Define and obtain the expression for the following: (i) Momentum thickness (θ). (ii) Energy thickness (δ**)	10	L3	CO4
	b.	In a subsonic wind tunnel which is having a test section velocity of 50 km/hour on a flat plate of size 2 m long and 1 m wide. The density of air is 1.15 kg/m ³ . The co-efficient of lift and drag are 0.75 and 0.15 respectively. Determine: (i) Lift force (ii) Drag force.	10	L3	CO4
		OR			
8.Q	·a.	Stain the expression for Drag force on a flat plate due to boundary layer and write Von-Karman momentum Integral equation.	12	L3	CO4
	b.	Explain the following: (i) Laminar and Turbulent Boundary layer. (ii) Kutta-Joukowsky theorem.	8	L2	CO4
		Module – 5			
Q.9	a.	Obtain an expression for velocity of sound wave in a fluid. Also deduce the relation for adiabatic process.	10	L3	COS
	b.	An aircraft is flying at a particular altitude of 15 km. At 15 km altitude, temperature is -50 $^{\circ}$ C. The speed of the aircraft corresponding to Mach number 2.0. Assume K = 1.4, R = 287 J/kg-K. Find the speed of the aircraft.	10	L3	COS
6 10		OR		ı	
Q.10	a.	Calculate the stagnation pressure, temperature and density at the nose of the aircraft. The aircraft is flying at 800 km/hour through the stationary air which has a pressure of 8.0 N/cm ² (abs) and temperature of -10 $^{\circ}$ C. Take R = 287 J/kg-K and K = 1.4	10	L3	COS
	b.	Draw and explain the propagation of pressure waves in a compressible fluid and explain about Mach cone, Mach angle. Also mention the zone of action and zone of silence.	10	L2	COS
		* * * * *			