The second of the	1.5		- elift	A HERSTON AND A
USN				

18MT751

Seventh Semester B.E. Degree Examination, Dec.2023/Jan.2024 Biomedical Signal Processing

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

	1	oie: Answer any FIVE juit questions, choosing OIVE juit question from each mo	dule.			
		Module-1				
1	a.	With a block diagram, explain the objectives of bio-medical signal analysis.	(00 MI)			
1	b.	Starting from mesh equations of potential difference between the limbs, RA, L	(08 Marks)			
	U.	derive an expression for aV_L and also represent vector graph solution.	(08 Marks)			
	c.	Describe Cardiac equivalent generator with the help of a block diagram.	(04 Marks)			
	٥.	Describe Caralac equivalent generator with the help of a block diagram.	(04 Marks)			
		OR				
2	a.	Describe: (i) Action potential (ii) Resting potential (iii) Depolarization	n			
		(iv) Repolarization	(08 Marks)			
	b.	With a block diagram, describe simple signal conversion system.	(06 Marks)			
	C.	Describe difficulties encountered in biomedical signal acquisition and analysis.				
		A)	,			
		Module-2				
3	a.	Describe the basics of signal averaging. Prove that signal averaging technique	es improve			
		SNR by factor of \sqrt{m} , where m is number of sweeps.	(10 Marks)			
	b.	Describe 60 Hz adaptive canceling using a sine wave models.	(10 Marks)			
		OR				
4	a.	Describe signal averager with block diagram. Explain flow chart of signal				
	1	program. Illustrate the limitations of signal averaging techniques.	(10 Marks)			
	b.	Describe principal noise canceller modes.	(05 Marks)			
	C.	Describe any two applications of adaptive filtering.	(05 Marks)			
		Module 2				
5	a.	Module-3 Along with relevant sketches, describe turning point algorithm.	(10 Manles)			
3	b.	Describe correlation in time and frequency domain.	(10 Marks)			
	c.	Describe the Fourier transform of periodic and non-periodic signals.	(05 Marks) (05 Marks)			
	٠.	periodic the rounce transform of periodic and non-periodic signals.	(03 Marks)			
	9	OR				
6	a.	Describe FAN algorithm along with illustrative sketches.	(10 Marks)			
	b.	Explain power spectral estimation with relevant mathematical equations.	(05 Marks)			
	C.	Explain convolution in time and frequency domain.	(05 Marks)			
		Module-4				
7	a.	Explain different template matching techniques of QRS detection.	(10 Marks)			
	b.	Explain QRS detection algorithm.	(10 Marks)			
8	0	OR Write a note on ST segment analysis.	(0CM 1)			
O	a. b.	With a neat block diagram, explain portable Arrythmia monitor.	(06 Marks)			
	c.	Briefly discuss ECG lead system.	(08 Marks) (06 Marks)			
	0.	Directly discuss LCO load system.	(no marks)			

Module-5

9 a. Describe the electrophysiological origin of brain waves with diagram. (07 Marks)
b. Describe different component waves of EEG signals. (07 Marks)
c. Explain adaptive segmentation algorithm. (06 Marks)

OR 🛵

- a. Describe different events and transients that occur in EEG signals.
 b. Explain the principle of detection of EEG rhythms.
 c. Explain how a matched filter can be used to detect spike and wave complexes in EEG
 - signal. (06 Marks)