ourth Semester B.E. Degree Examination, Dec.2023/Jan.2024 **Mechanics of Materials**

Time: 3 hrs

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Define the following terms: 1
 - True stress i)
 - ii) Poisson's ratio
 - Stiffness iii)
 - iv) Volumetric strain.

(04 Marks)

- b. Derive the expression for the total elongation of a tapered circular bar cross-section of diameter 'd₁' and 'd₂' when subjected to an axial load 'P'.
- A steel bolt of 16mm diameter passes centrally through a copper tube of internal diameter 20mm and external diameter 30mm. The length of the whole assembly is 500mm. After tight $\frac{1}{2}$ th of a turn. What are the fitting of the assembly, the nut is over tightened by quarter stresses introduced in bolt and tube. If pitch of nut is 2mm. Take $E_{steel} = 200$ GPa and $E_{copper} = 120$ GPa. (08 Marks)

- State Hooke's law. Sketch the typical stress-strain curve for mild-steel specimen during 2 tension test. Show the salient points on the graph and briefly explain them. (10 Marks)
 - Define Young's modulus and rigidity modulus. Derive relation between Young's modulus (E) and rigidity modulus (G). (10 Marks)

Module-2

- Derive the expressions for normal and tangential stress on a plane inclined at ' θ ' to the plane of stress in x-direction in a general two dimensional stress system and show that sum of normal stress in any two mutually perpendicular directions is constant. (12 Marks)
 - The state of stress in a two dimensionally stressed body is shown in Fig.Q.3(b). Determine graphically (by drawing Mohr's circle), the principal stresses, principal planes, maximum (08 Marks) shear stress and its planes.

OR

- The state of stress at a point in a strained material is shown in Fig.Q.4(a). Determine:
 - i) The direction of the principal planes.
 - ii) The magnitude of principal stresses.
 - iii) The magnitude of the maximum shear stress and its direction.
 - iv) Draw Mohr's circle and verify the results obtained analytically.

(20 Marks)

Module-3

- 5 a. Define a beam. Explain with simple sketches, different types of beams. (06 Marks)
 - b. Draw the shear force and bending moment diagrams for the overhanging beam, carrying uniformly distributed load of 2kN/m over the entire length and a point load of 2kN as shown in Fig.Q.5(b). Locate the point of contra-flexure. (14 Marks)

OR

Draw shear force and bending moment diagrams for the beam shown in Fig.Q.6. Locate the point of contraflexure. (20 Marks)

Module-4

7 a. Prove the relation $\frac{M}{I} = \frac{\sigma}{Y} = \frac{E}{R}$ with usual notations.

(10 Marks)

b. Prove that a hollow shaft is stronger and stiffer than the solid shaft of the same material, length and weight. (10 Marks)

OR

- 8 a. Derive the torsional equation for a circular shaft with usual notations. State the assumptions made. (10 Marks)
 - b. A hollow steel shaft transmits 392kW of power at 150rpm. The total angle of twist in a length of 3m of shaft is 2.5°. Find the inner and outer diameters of the shaft. If the permissible shear stress is 90MPa. Take G = 85GPa. (10 Marks)

Module-5

9 a. Differentiate between thin and thick cylinders.

(02 Marks)

- b. Derive an expression for circumferential and longitudinal stress for a thin cylinder subjected to an internal pressure 'P'. (08 Marks)
- c. Derive the expression for radial and hoop stresses (Lame's equations) for a thick cylinder.
 (10 Marks)

OR

10 a. Derive an expression for Euler's buckling load in a column when both ends are fixed.

(10 Marks)

b. Derive an expression for a critical load in a column subjected to compressive load, when both ends are hinged. (10 Marks)

* * * * *