

15MATDIP31

Third Semester B.E. Degree Examination, Dec.2023/Jan.2024 Additional Mathematics - I

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Show that

$$\frac{(\cos\theta + i\sin\theta)^4}{(\sin\theta + i\cos\theta)^4} = \cos 8\theta + i\sin 8\theta$$
 (05 Marks)

b. Prove that
$$[\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}] = [\vec{a} \ \vec{b} \ \vec{c}]^2$$
 (05 Marks)

c. Prove that
$$\hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k}) = 2\vec{a}$$
 (06 Marks)

2 a. Find the real part of
$$\frac{1}{1+\cos\theta+i\sin\theta}$$
 (05 Marks)

b. If
$$\vec{a} = 3i - 2j + 4k$$
 and $\vec{b} = i + j - 2k$, find (i) $\vec{a} \cdot \vec{b}$ (ii) Angle between $\vec{a} \cdot \vec{b}$. (05 Marks)

c. Show that
$$[\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a}] = 2[a, b, c]$$
 (06 Marks)

3 a. If
$$y = tan^{-1}x$$
, prove that $(1 + x^2)y_2 + 2xy_1 = 0$ and hence show that
$$(1 + x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$$
 (06 Marks)

b. Find the angle between the radius vector and the tangent for the curve

$$r^{m} = a^{m}(\cos m\theta + \sin m\theta)$$
 (05 Marks)
Find the pedal equation of $r^{n} = a^{n} \cos n\theta$ (05 Marks)

c. Find the pedal equation of
$$r^n = a^n \cos n\theta$$

4 a. If
$$u = log\left(\frac{x^4 + y^4}{x + y}\right)$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$ (06 Marks)

b. If
$$u = f(x - y, y - z, z - x)$$
, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$ (05 Marks)

c. Find
$$\frac{\partial(u, v, w)}{\partial(x, y, z)}$$
 where $u = x^2 + y^2 + z^2$, $v = xy + yz + zx$, $w = x + y + z$ (05 Marks)

Module-3

5 a. Evaluate the integral
$$\int_{0}^{\pi} x \sin^2 x \cos^4 x dx$$
 using Reduction formula. (05 Marks)

b. Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{x}} xy \, dy \, dx$$
 (05 Marks)

c. Evaluate
$$\int_{-1}^{1} \int_{0}^{2} \int_{x-2}^{x+2} (x+y+z) \, dy \, dx \, dz$$
 (06 Marks)

15MATDIP31

OR

- Evaluate $\int \sin^4 x \ dx$, using Reduction formula. (05 Marks)
 - b. Evaluate $\int x^{3/2} (1-x)^{3/2} dx$, using Reduction formula. (06 Marks)
 - c. Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^2 + y^2) dy dx$, using Reduction formula. (05 Marks)

Module-4

- A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2 \cos 3t$, $z = 2 \sin 3t$ where t is the time. Find the velocity and acceleration at any time t and also (05 Marks) their magnitudes at t = 0.
 - b. Find div \vec{F} , where $\vec{F} = \nabla(x^3 + y^3 + z^3 3xyz)$ (06 Marks)
 - c. Find the value of the constant 'a' such that the vector field $\vec{F} = (axy - z^3)i + (a-2)x^2j + (1-a)xz^2k \quad \text{is irrotational}.$ (05 Marks)

- OR
 If $x = t^2 + 1$, y = 4t 3, $z = 2t^2 6t$ represents the parametric equation of the curve. Find the angle between the tangents at t = 1 and t = 2. (05 Marks)
 - Find the angle between the normals to the surface at the points (4, 1, 2) and (3, 3, -3). (05 Marks)
 - c. Show that $\vec{F} = \frac{xi + yj}{x^2 + y^2}$ is both solenoidal and irrotational. (06 Marks)

- a. Solve: $x^2y dx (x^3 + y^3)dy = 0$ b. Solve: (2x + y + 1)dx + (x + 2y + 1)dy = 0(06 Marks)
 - (05 Marks)
 - c. Show that $\frac{dy}{dx} \frac{2y}{x} = x + x^2$ (05 Marks)

- 10 a. Solve: $(y^3 3x^2y)dx (x^3 3xy^2)dy = 0$ (05 Marks)
 - b. Solve: $\frac{dy}{dx} + y \cot x = \cos x$ (05 Marks)
 - c. Solve: $\frac{dy}{dx} + \frac{y}{x} = y^2x$ (06 Marks)