CBCS SCHEME

USN

BMATE301/BEE301

Third Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Mathematics-III for EE Engineering

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

- 2. VTU Formula Hand Book is permitted.
- 3. M: Marks, L: Bloom's level, C: Course outcomes.
- 4. Mathematics handbook is permitted.

		Module – 1	M	L	C
Q.1	a.	Solve: $(D^4 + 8D^2 + 16)y = 0$.	6	L1	CO1
	b.	Solve: $(D^3 - 3D + 2)y = 2 \sinh x$	7	L2	CO1
	c.	Solve: $x^2y'' - 3xy' + 5y = 3\sin(\log x)$	7	L3	CO1
		OR			
Q.2	a.	Solve: $(D^4 - 4D^3 - 5D^2 - 36D - 36)y = 0$.	6	L1	CO1
**************************************	b.	Solve: $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = \sin 2x$.	7	L2	CO1
	c.	Solve: $(2x+1)^2 \frac{d^2y}{dx^2} - 2(2x+1)\frac{dy}{dx} - 12y = 3(2x+1)$.	7	L3	CO1
		Module – 2			
Q.3	a.	Find the curve at best fit of the form $y = ax^6$ to the following data: x 1 2 3 4 5 y 0.5 2 4.5 8 12.5	6	L2	CO2
	b.	Calculate the coefficient of correlation and obtain the lines of regression for the following data :	7	L3	CO2
	c.	In a partially destroyed laboratory record of correlation data, following results only available: Variance of x is 9 and regression lines, $4x - 5y + 33 = 0$; $20x - 9y = 107$. Find (i) Mean value of x and y (ii) SD of y. (iii) Coefficient of correlation between x and y.	7	L4	CO2
		OR			
Q.4	a.	Fit a curve of the form, $y = ax^2 + bx + c$ to the following data: x : 1	6	L2	CO2
	b.	If θ is the acute angle between the two regression lines relating the variables x and y, show that $\tan\theta = \left(\frac{1-r^2}{r}\right)\frac{\sigma_x\sigma_y}{\sigma_x^2+\sigma_y^2}$. Indicate the significance of the cases $r=0$ and $r=\pm1$	7	L2	CO2

	c.	Ton competitor & in a lillistic collect fallice by 5 lagges 12, 12, 12	7	L3	CO2
		following order. Use the rank correlation coefficient to decide which pair	te		
		judges have the nearest approach to common test of music.			
		A I O J IO J			
		B 3 3 3 10 5 7			
		C 6 4 9 8 1 2 3 10 5 7			
		Module – 3	6	L2	CO3
Q.5	a.	Find the Fourier series for the function $I(x) = x$ in the interval	0		000
		$-\pi \le x \le \pi$, hence deduce the $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.			
		n=[II 0 in holf range	7	L3	CO3
	b.	Expand the function $f(x) = x(\pi - x)$ over the interval $(0,\pi)$ in half range	'		000
		cosine Fourier series hence deduce that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$			
	c.	The following table gives the variations of a periodic current A over a	7	L3	CO3
		certain period T.			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		200 100			
		A(amp) 1.98 1.30 1.05 1.30 -0.88 -0.25 1.98 Show that there is a current part of 0.75 amp in the current A and obtain the			
		amplitude of the first harmonic.			
		OR			
Q.6	a.	Find the Fourier expansion of the function $f(x) = (\pi - x)^2$ over the interval	7	L2	CO3
2.0					
		$0 \le x \le 2\pi$. Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.			
		n= II U			602
		Expand the function $f(x) = \begin{cases} \frac{1}{4} - x & \text{for } 0 < x < \frac{1}{2} \\ 0 - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ in the half range sine	6	L2	CO3
	b.	Expand the function $f(x) = \begin{cases} 4 & 2 \\ 2 & 4 \end{cases}$ in the half range sine			
		$0 - \frac{3}{2} + \frac{1}{2} < x < 1$			
			V.		
		series.	-	T 2	CO2
	c.	Find the constant term and the first harmonic in the Fourier series for $f(x)$	7	L3	CO3
		given by the table.			
	1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	10				
		Module – 4	6	L2	CO4
0.7	a.	Find the Fourier transform of the function, $f(x) = \begin{cases} 1 & \text{for } x \le a \\ 0 & \text{for } x \ge a \end{cases}$	0	LZ	C04
Q.7	a.	This the Fourier transform of the reflection, $f(x) = \begin{bmatrix} 0 & \text{for } x \ge a \end{bmatrix}$			
		where a is a positive constant hence evaluate integrals,			
		c sin ax cos ax			
		$\int \frac{1}{x} dx$			

BMATE301/BEE301

	h	Find the Fourier cosine transform of $f(x) = e^{-ax}$, $a > 0$, hence deduce that	7	L3	CO4
	b.				
		$\int_{0}^{\infty} \frac{\cos mx}{x^2 + a^2} dx = \frac{\pi}{2a} e^{-am}$			
		$\int_{0}^{1} x^{2} + a^{2}$ 2a			
		$2z^{2} + 3z$	7	L3	CO4
	c.	Find the inverse z-transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$.			
		OR			
		$\frac{x^2}{2}$	6	L2	CO4
Q.8	a.	Find the Fourier transform of $f(x) = e^{-2}$.			
	b.	Find the z-transform of $\sin n\theta$ and $\cos n\theta$ hence find $z\left\{\cos\left(\frac{n\pi}{2}\right)\right\}$ and	7	L3	CO4
		$z\left\{\sin\left(\frac{n\pi}{2}\right)\right\}.$			
		Solve the difference equation, $u_{n+2} - 5u_{n+1} + 6u_n = 2$ given $u_0 = 3$, $u_1 = 7$,	7	L3	CO4
	c.				
		using z-transforms.			
		Module – 5	6	T 1	CO5
Q.9	a.	Define (i) Type I and Type II errors. (ii) Confidence interval. (iii) Level of significance.	6	L1	COS
		The probability that a pen manufactured by a company will be defective is	7	L2	CO5
	b.	 (i) Exactly 2 will be defective. (ii) At least 2 will be defective. (iii) None will be defective 			
	c.	In normal distribution, 31% of the items are under 45 and 8% are over 64 Find the mean and SD, given that $A(0.5) = 0.19$ and $A(1.4) = 0.42$, where $A(Z)$ is the area under the standard normal curve from 0 to z.	7	L3	CO5
		OR			
			6	5 L	2 CO5
Q.10	a.	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$?		
	b	53 and 51. The sample is drawn from a population whose mean is 47.5 Find whether the sample mean differs significantly from the population mean at 5% level of significance (Given $t_{0.05}$ (df = 8) = 2.31)	n	7 L	
	c	appearing on the face x is given by the table: x 1 2 3 4 5 6	er	7 L	3 CO
		frequency 15 6 4 7 11 17 Test the hypothesis that the die is unbiased. Given $\chi^2_{0.05}(5) = 11.07$ and	nd		*