GBGS SCHEME

USN COLUMN

17EC71

Seventh Semester B.E. Degree Examination, Dec.2023/Jan.2024 Microwave and Antennas

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain Reflex Klystron operation and its mechanism of oscillations with a neat diagram.
 - b. A transmission line has the following primary constants $R = 2\Omega/m$, L = 8nH/m, G = 0.5mV/m, $C = 0.23p^F/m$ and f = 1GHz. Find:
 - i) Characteristic impedance ZO
 - ii) Propagation constant r
 - iii) Wavelength λ.
 - iv) Phase velocity V_p.

(10 Marks)

OF

- 2 a. Derive the expression for the voltage a current at any point on the transmission line equation and solution starting from the fundamentals. (10 Marks)
 - b. Explain the standing waves with neat wave forms.

(10 Marks)

Module-2

3 a. Derive scattering parameters for a multiport network.

(10 Marks)

b. Prove Z and Y matrices are symmetrical for a reciprocal network.

(10 Marks)

OR

4 a. Derive S – Matrix for a Magic Tec with neat diagram and its applications.

(10 Marks)

b. Explain the working of precision Dielectric Rotary phase shifter.

(10 Marks)

Module-3

- 5 a. Discuss the operation of micro strip lines with its structure. Compare strip line and microstrip line. (10 Marks)
 - b. Explain the operation of coplanar strip line along with a neat diagram. Write down the expression for characteristic impedance. (10 Marks)

OR

- 6 a. Explain the following terms as related to antenna system.
 - i) Directivity and Gain
 - ii) Beam area
 - iii) Effective height
 - iv) Bandwidth.

(10 Marks)

b. A radio link has a 15W transmitter connected to an antenna of 2.5m² effective aperture at 5GHz. The receiving antenna has an effective aperture 0.5m² and is located 15KM line of sight distance from the transmitting antenna. Assuming lossless, matched antenna, find the power delivered to the receiver.

(10 Marks)

Module-4

- 7 a. Explain the field pattern and phase pattern with neat diagram. (10 Marks)
 - b. Derive an expression and draw the field pattern for an array of two isotropic point sources situated symmetrical with respect to origin with equal amplitude and phase spaced $\lambda/2$ apart. (10 Marks)

OR

8 a. Derive an expression for field of a dipole in general for the case of thin linear antenna.

(10 Marks)

- b. Find the directivity D for the sources with radiation intensity.
 - i) $U = Um \sin^2 \theta$, $0 \le \theta \le \pi$, $0 \le \phi \le 2 \pi$.
 - ii) $U = Um \cos^2 \theta$, $0 \le \theta \le \pi/2$, $0 \le \phi \le 2\pi$

(10 Marks)

Module-5

- 9 a. Derive an expression for field strength E_{θ} and H_{ϕ} in case of small loop antenna. (10 Marks)
 - b. Derive an expression for radiation resistance of a small loop antenna.

(10 Marks)

OR

- 10 a. Derive an expression for radiation resistance of a short dipole antenna. (10 Marks)
 - b. Explain the different types of horn antenna with diagram.

(10 Marks)

* * * * *