	CBCS SCHEME	
USN		17CS753
Seventh Sem	ester B.E. Degree Examination, Dec.20)23/Jan.2024

Digital Image Processing

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Explain the components of image processing system with a block diagram. (12 Marks)
 - Define the following:
 - i) **Image**
 - ii) Digital image
 - iii) Digital image processing
 - Euclidean distance

(08 Marks)

Explain image sampling and quantization.

(10 Marks)

Explain Neighbors of a pixel and types of adjacency.

(10 Marks)

Module-2

Explain unsharp masking. How is highboost filtering obtained?

(10 Marks)

- What is point processing techniques? Discuss following intensity transformation functions:
 - Image Negatives
 - ii) Log transformations
 - iii) Power Law (Gamma) transformations

(10 Marks)

OR

Discuss averaging filters and median filters.

(10 Marks)

Using a 3 × 3 neighborhood and necessary diagram, explain the mechanics of linear spatial filtering. (10 Marks)

What are the basic steps for filtering in the frequency domain? 5

(06 Marks)

Define 2-D discrete fourier transform and its inverse.

(04 Marks)

Explain how image smoothing is obtained using ideal lowpass filter and Gaussian lowpass filter. (10 Marks)

OR

With a block diagram, explain homomorphic filtering. 6 a.

(12 Marks)

Discuss any four properties of the two dimensional discrete Fourier transform. b.

(08 Marks)

Module-4

- 7 Define multiple thresholding. Write the iterative algorithm for global thresholding. (10 Marks)
 - Explain canny edge detection technique.

(10 Marks)

OR

8 a. Write the basic region growing algorithm based on 8 - connectivity. (10 Marks)

b. For the given horizontal intensity profiles obtain the first and second derivative by mentioning the necessary equations.

5 5 4 3 2 1 0 0 0 6 0 0 - -

(10 Marks)

Module-5

9 a. Explain coding redundancy.

(06 Marks)

b. Define data compression and compression ratio.

(04 Marks)

c. With a block diagram, explain image compression model.

(10 Marks)

OR

10 a. Obtain Huffman code for the following data:

A CONTRACTOR OF THE PARTY OF TH						0. //~
Symbol 🗼	\mathbf{a}_2	a ₆	a_1	a4	a ₃	a ₅
Probability	0.4	0.3	0.1	0.1	0.06	0.04

(10 Marks)

b. Consider the following 4×4 , 8 bit image of a vertical edge as shown in Fig Q10(a) and a 512 word dictionary with the following starting content table Q10 (a)

		y		
	39	39	126	126
, 7	39	39	126	126
	39	39	126	126
	39	39		126
	_	Fig (Q10(b)

Anna Carlos	
Dictionary	Entry
Location	
0	
1	1
	₹. ·
i d	
And a	
255 256	255
256	_
	•
511	-
PP 1 1	010/11

Table Q10(b)

Obtain the encoded output using LZW coding.

(10 Marks)

* * * * *