GBGS SCHEME

MAKE AN L	1 150 14		
USN			
	1 12	1 1	

BBEE103/203

First/Second Semester B.E/B.Tech. Degree Examination, Dec.2023/Jan.2024 Basic Electronics for EEE Stream

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
1	a.	Explain the forward and reverse characteristics of pn-junction diode (consider a silicon semiconductor).	6	L2	CO1
	b.	With a neat circuit diagram and waveform, explain the working of Bridge rectifier.	6	L1	CO1
	C.	A 9.1V reference source in to use a series connected zener diode and a resistor of $1k\Omega$, connected to a 30V supply. Calculate the circuit current when the supply voltage drops to 27V. Assume $I_{ZT}=20\text{mA}$. Also find the power dissipated in the resistor.	8	L3	CO1
2		OR #		T = .	
2	a.	Write a note on diode approximation, also calculate current in the circuit when a silicon diode connected in series with a resistor of $4.7K\Omega$ is driven by a 15V dc supply.	6	L1	CO1
	b.	With necessary waveform and circuit diagram, explain how a RC π-filter work.	6	L1	CO1
	c.	Explain how Zener diode works as voltage regulator considering no-load and full-load conditions.	8	L2	CO1
		Module – 2			
3	a.	Considering a BJT common emitter circuit, explain how voltage amplification is obtained.	6	L1	CO2
	b.	With a neat circuit diagram, and characteristics graph, explain common base configuration of pnp transistor.	8	L1	CO2
	c.	Explain the drain and transfer characteristics of n-channel JFET.	6	L2	CO2
1	0	OR Evenloin hove O maint in obtained an a DC lead line as a ridge of a second	-	T.0	COA
4	a.	Explain how Q-point is obtained on a DC load line, considering a transistor base bias circuit.	6	L2	CO2
	b.	Explain common collector configuration of pnp transistor with neat circuit diagram and characteristics.	8	L2	CO2
852	C.	With neat semiconductor model, explain how an enhancement type MOSFET works.	6	L1	CO1
		1 of 3			

BBEE103/203

	·				
5	a.	Module – 3 Define the following with respect to op-amp: i) Input offset voltage ii) Input bias current	8	L1	CO2
		iii) CMRR iv) Slew rate.			
	b.	Explain the open loop differential amplifier circuit using op-amp. Mention the advantage of negative feedback in amplifier circuit.	6	L2	CO2
	c.	Derive output voltage equation for 3 input inverting summer using op-amp.	6	L3	CO2
6	a.	Mention all the ideal op-amp characteristics.	6	L1	CO2
	b.	Design a non-inverting amplifier circuit using op-amp, if the gain of the amplifier in 10 and input voltage is 1V.	6	L3	CO2
	C.	Explain the working of op-amp connected as integrator, also draw the output waveforms.	8	L2	CO2
		Module – 4			
7	a.	Convert the following numbers: i) $141.6875_{10} = \frac{2}{10}$ ii) $125.076_8 = \frac{1}{10}$ iii) $41F.BD_{16} = \frac{1}{10}$	6	L3	CO3
	b.	Find the complement of the functions: i) $F_1 = \overline{X} Y \overline{Z} + \overline{X} \overline{Y} Z$ ii) $F_2 = X(\overline{Y} \overline{Z} + YZ)$ Apply De-Morgan's theorem as many times as necessary.	6	L3	CO3
	c.	Define combinational circuit. Design a half adder and implement using NAND gates.	8	L1	CO3
		OR		T	
8	a.	Solve the following: i) Subtract using 10's complement 3250 – 72532 ii) Subtract using 2's complement 1010100 – 1000100.	6	L3	CO3
	b.	Express the Boolean function $F = XY + \overline{X}Z$ in product of maxterms form.	6	L2	CO3
	c.	Design a full adder and implement using basic gates.	8	L3	CO3
		2 of 3			
12 12 12 12 12		2 0.2			

2 01 3

BBEE103/203

		Module – 5			
9	a.	A strain gauge with 40cm wire length and 25 μ m wire diameter has a resistance of 250 Ω and a gauge factor of 2.5. Calculate the change in wire length and diameter when the resistance change is measured as 0.5 Ω . Assume that the complete length of wire is strained positively.	6	L3	CO
	b.	With a neat diagram, explain the working of LVDT. Also mention the applications of it.	8	L1	C
	c.	With a neat block diagram, explain the simple communication system.	6	L1	C
		OR			
10	a.	A parallel – plate capacitive transducer has a plate area $(l \times w) = (40 \text{mm} \times 40 \text{mm})$ and plate spacing (d) = 0.5 mm. Calculate the device capacitance and the displacement (Δd) that causes the capacitance to change by 5 pF. Also, determine the transducer sensitivity.	6	L4	C
	b.	With neat diagram, explain potentiometer type resistive transducer. Also mention the applications of it.	8	L1	С
	c.	With a neat block diagram, explain AM superheterodyne receiver.	6	L1	C
		3 of 3			