

18BT61

Sixth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Process Control and Automation

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Why any bioreactor requires instrumentations? What are the factors that need to be maintained in a reactor? (10 Marks)
 - b. With a neat sketch, explain flow injection analysis.

(10 Marks)

OR

a. Explain briefly the ON-LINE measurement of the estimation of the biomass.
b. With a neat sketch, explain any one pressure measuring device.
(10 Marks)
(10 Marks)

Module-2

3 a. Derive the transfer function $\frac{H(s)}{Q(s)}$ for the liquid level system shown in the Fig.Q3(a).

Fig.Q3(a)

(10 Marks)

b. Two non interacting tanks are connected in series where the time constants are $\tau_1 = 1$, $\tau_2 = 0.5$ and $R_2 = 1$. Sketch the response of the level in tank 2, if a unit step change magnitude is made in the input flow rate to tank 1. (10 Marks)

OR

a. Derive the transfer function 2 tank interacting system.

(10 Marks)

b. Find the transfer function $\frac{H_3(s)}{O(s)}$ for the following system shown in Fig.Q4(b).

Fig.Q4(b)

(10 Marks)

Module-3

- Derive the transfer function for 2nd order system taking a suitable example. (10 Marks)
 - b. For a 2nd order system subjected to a step change of magnitude 4. Determine:
 - (i) Overshoot
- (ii) Cyclic frequency
- (iii) Response time
- (iv) Rise time

- (v) Decay ratio
- (vi) Ultimate response if damping coefficient is 0.6 and w_n is 5 rad/s.

(10 Marks)

Derive step response for 2nd order system.

(10 Marks)

What do you mean by transportation lag? Derive the transfer function for transportation lag. (10 Marks)

Module-4

With a neat sketch explain pneumatic control valve. 7

(10 Marks)

A step change of magnitude 4 is introduced into a PI controller. The value of gain is 6 and the reset rate is 0.5. Plot the response of the PI controller. (10 Marks)

- Determine the offset for proportional controller towards a step change in load variable (regulatory mechanism). (10 Marks)
 - Determine the transfer function $\frac{C(s)}{R(s)}$ for the block diagram shown in Fig.Q8(b).

(10 Marks)

Module-5

Draw the Bode diagram for the first order system.

(10 Marks)

b.

Find:

- Characteristic equation
- (ii) Determine the value of K_e for which control system is stable.
- (iii) For which value of Ke the control system is on the threshold of stability. (10 Marks)

OR

- Explain the root locus method to check the stability of the control system. 10 (10 Marks)
 - For the given open loop transfer functions find out the range of K for which the system stable. What will be the frequency of sustained oscillation:

$$G(s) = \frac{K}{(s+1)(50s^2 + 12s + 0.5)}$$
 (10 Marks)