

USN 18BT52

Fifth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Chemical Reaction Engineering

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Milk is pasteurized if it is heated to 63°C for 30 min, but if it is heated to 74°C it only needs 15s for the same result. Find the activation energy of this sterilization process. (05 Marks)
 - b. Derive the expression for calculating rate. Constant (K) for an Irreversible Bimolecular.
 Type Second order reactions.

OR

- 2 a. Derive the expression Irreversible reaction in series for calculating residual concentration of C_A , C_R and C_S . $A \xrightarrow{K_1} R \xrightarrow{K_2} S$ (10 Marks)
 - b. Evaluate the value of Rate constant 'K' and 'N' order of the reaction for the given data by using differential method.

t: (sec)	0	20	40	60	120	180	800
Concentration C _A , mol/lt	10	8	6	5	3	2	1

(10 Marks)

Module-2

- 3 a. Consider a feed $C_{A0} = 100$, $C_{B0} = \overline{200}$, $G_0 = 100$ to a steady flow reactor. The isothermal gas phase reaction. $A + 3B \rightarrow 6R$.

 If $C_A = 40$ at the reactor exit, what is C_B , X_A and X_B there? (10 Marks)
 - b. Derive the performance equation for ideal batch and CSTR reactor. (10 Marks)

OR

4 a. Pure gas reactant $A(C_{A0} = 100 \text{ millimol/lt})$ is fed at a steady rate into a mixed flow reactor (V = 0.1 lt) where it dimerizes $(2A \rightarrow R)$. For different gas feed rates the following data are obtained.

Run number:	1	2	3	4	
V_0 ($\ell t/hr$)	10	3	1.2	0.5	
CAf., millimol/lt	85.7	66.7	50	33.4	

Find the rate equation for this reaction.

(10 Marks)

b. The homogenous gas decomposition of phosphine $4PH_{3(g)} \rightarrow P_{4(g)} + 6H_2$. Proceeds at 649°C with the first order rate

$$-r_{PH_3} = (10/h_2) C_{PH_3}$$

What size of plug flow reactor operating at 649°C and 460 kPa can produce 80% conversion of a feed consisting of 40 mol of pure phosphine per hour? (10 Marks)

Module-3

- 5 a. Explain about the three interrelated factors make up the contacting (or) flow pattern in non ideal flow. (10 Marks)
 - b. Explain the Mathematical and Graphical explanation between the
 - i) F and E curves ii) C_{step} to an F curves iii) C_{step} to an F curve. (10 Marks)

6 a. Explain about the properties of the E and F curves for various flow in i) Plug flow

ii) Mixed flow

iii) Arbitary flow.

(10 Marks

b. The concentration readings represent a continuous response to a pulse input into a closed vessel which is to be used as a chemical reactor. Calculate the mean residence time of fluid in the vessel 't' and tabulate and plot the exit age distribution E.

Time (t), min	0	5	10	15	20	25	30	35
Tracer Ouput concentration, C _{pulse} gm/lt fluid	0	3	5	5	4	2	1	0

(10 Marks)

Module-4

7 a. Explain about the Single – Substrate – Enzyme Interaction mechanism for a biological process. (10 Marks)

b. The following data have been obtained for two different initial enzyme concentration for an Enzyme – Catalyzed reaction.

$V[E0] = 0.015g/\ell g/\ell - min$	1.14	0.87	0.70	0.59	0.50	0.44	0.39	0.35
(Eg) cores o	20.0						2.9	2.5
$[S] g/\ell$ $C[Eo] = 0.00875g/\ell g/\ell - min$								

i) Find K_m ii) Find V_m for $[E_o] = 0.015g/\ell$

iii) Find V_m for $[E_o] = 0.00875$ g/ ℓ

iv) Find K2.

OR

8 a. Explain about the mechanism involved in competitive and uncompetitive inhibition enzyme kinetics on single substrate reaction. (15 Marks)

b. Give the Mathematical and Graphical representation of i) Line weaver – Burk plot

ii) Eadie – Hofstee plot.

(05 Marks)

(10 Marks)

Module-5

9 a. i) Explain about the Growth models for filamentous organisms.

(05 Marks)

ii) Give the Graphical representation on growth and non – growth associated product formation kinetics. (05 Marks

b. Explain about the mathematical explanation on substrate and product inhibition on cell growth and product formation. (10 Marks)

OR

- a. Glucose is being used for the production of K-Coli in a $1200m^3$ bioreactor. 60g/L of glucose is being fed into the system with a substrate conversion of 95% in the process. The Biomass yield from the substrate is 0.55g/g. Assume that the specific growth rate is approximately equal to μ_{max} which is given as $0.5h^{-1}$. For this batch mode of operation, the initial cell concentration is 0.1g/L and the downtime between batches is 20 hours.
 - i) Calculate the batch time (in terms of h)

ii) Total mass of cells produced per batch (in kg) is.

iii) Total number of batches in a year.

(12 Marks)

b. Calculate i) Total mass of cells produced annually during the batch culture (tons/year) ii) If the derived annual biomass production is to be 15,000 tons/year, what should be the volume of the reactor (in m³). Evaluate both the problems by using above problem Q.No. 10(a).

* * * *