

USN

21AU44

Fourth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Theory of Machines

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Discuss the working of a beam engine and coupling rod of Locomotive with relevant sketch.
 (10 Marks)
 - b. Determine the mobility of the mechanisms for the following:

(10 Marks)

OR

- In a slider crank mechanism, the crank OB = 30 mm and the connecting rod BC = 120 mm. The crank rotates at a uniform speed of 300 rpm clockwise. Find
 - (i) Velocity of Piston C and angular velocity of connecting rod BC
 - (ii) Acceleration of piston C and angular acceleration of connecting rod BC. (20 Marks)

Module-2

Derive an expression for length of arc of contact, path of contact and contact ratio. 3

(10 Marks)

In an epicyclic gear train, the arm A is fixed to the shaft S. The wheel B having 100 teeth rotates freely on this shaft S wheel F 150 teeth is separately driven. If the arm A runs at 200 rpm. Wheel F at 100 rpm in the same direction. Find (i) No. of teeth of gear C. (ii) Speed of (10 Marks) wheel B.

- A Cam rotating clockwise at uniform speed of 300 rpm operates a reciprocating follower 4 through a roller 1.5 cm diameter. The follower motion is defined as below:
 - (i) Outward during 150° with UARM (ii) Dwell for next 30°
 - (iii) Return during 120° with SHM
- (iv) Dwell for the remaining period.

Stroke of the follower is 3 cm. Minimum radius of the cam is 3 cm. Draw the cam profile.

- Follower axis passes through cam axis.
- Follower axis is offset to the right by cam. (b)

(20 Marks)

Module-3

A slider crank mechanism is shown in Fig. Q5. The force applied to the piston is 1000 N. 5 when the crank is at 60° from IDC. Calculate the driving torque T_2 . (20 Marks)

Fig. Q5

With a derivation, explain D'Alembert's principle.

(10 Marks)

When a crank is 45° from the inner dead centre on the down stroke.

The effective steam pressure on the piston of a vertical steam engine is 2.5 bar.

The diameter of the cylinder = 0.75 m.

Stroke of the piston = 0.50 m and

Length of connecting rod = 1 m.

Determine the torque on the crank shaft, if the engine runs at 350 rpm and the mass of (10 Marks) reciprocating parts is 200 kg.

Module-4

- Derive a relation between E, emax and Ks or relation between emax, Ks and I. (06 Marks) 7
 - b. Derive an expression for size of flywheel.

(08 Marks)

Prove that the maximum fluctuations of energy C is given by C = 0.02 qE for a flywheel.

(06 Marks)

OR

8 a. Derive an expression for Porter Governor for speed and height. (10 Marks)

b. The radius of rotation of the balls of a Hartnell governor is 8 cm at the minimum speed of 3000 rpm. Neglecting gravity effect determine the speed after the sleeve is lifted by 6 cm, also determine the initial compression of the spring, governor effort and power. The particulars of the governor are, length of ball arm = 15 cm, length of sleeve arm = 10 cm, mass of each ball = 4 kg and stiffness = 25000 N/m. (10 Marks)

Module-5

9 a. Derive an expression for total frictional torque for a flat pivot bearing.
b. Derive an expression for total frictional torque for flat collar bearing.
(10 Marks)
(10 Marks)

OR

a. Derive an expression for length of open belt drive.
b. Derive an expression for ratio of belt tensions.
(12 Marks)
(08 Marks)

* * * * *