

BESCK104C/BESCKC104

First Semester B.E./B.Tech. Degree Examination, Nov./Dec. 2023 Introduction to Electronics & Communication

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

|     |    | Module - 1                                                                                                                                                                                                                                       | M | L  | C   |
|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|-----|
| Q.1 | a. | With a neat circuit diagram and waveform, explain the working of Bridge rectifier with filter.                                                                                                                                                   | 8 | L2 | CO1 |
| d   | b. | With a neat block diagram, explain the working of DC power supply. Also mention, the principle components used in each block.                                                                                                                    | 7 | L2 | CO1 |
|     | c. | A 6V Zener diode has a maximum rated power dissipation of 500mW. If the diode is to be used in a simple regulator circuit to supply a regulated 6V to a load of $500\Omega$ . Determine a suitable value of series resistor for a supply of 12V. | 5 | L3 | CO1 |
|     |    | OR                                                                                                                                                                                                                                               |   |    |     |
| Q.2 | a. | With a neat block diagram, derive the expression for overall gain of a Negative feedback amplifier.                                                                                                                                              | 6 | L2 | CO1 |
|     | b. | Define the following with respect to amplifier i) Input resistance ii) Amplifier gain iii) Bandwidth iv) Phase shift.                                                                                                                            | 8 | L2 | CO1 |
|     | c. | What are multistage amplifiers? Write different methods used for interstage coupling.                                                                                                                                                            | 6 | L2 | CO1 |
|     | ,  | Module – 2                                                                                                                                                                                                                                       |   | ,  |     |
| Q.3 | a. | Explain the conditions for sustained oscillations. Determine the frequency of oscillation of a three stage ladder network in which $C=10nF$ and $R=10K\Omega$                                                                                    | 6 | L3 | CO2 |
|     | b. | With suitable circuit diagram, explain single stage Astable multivibrator using operational Amplifier.                                                                                                                                           | 7 | L2 | CO2 |
|     | c. | With a neat circuit diagram, describe the operation of a crystal controlled oscillator.                                                                                                                                                          | 7 | L2 | CO2 |
|     |    | OR                                                                                                                                                                                                                                               |   |    |     |
| Q.4 | a. | Define the following with respect to operational amplifier and write their typical values.  i) Open loop voltage gain ii) Input offset voltage iii) Slew rate iv) Full power Bandwidth                                                           | 8 | L2 | CO2 |
|     | b. | Sketch the circuits of each of the following based on use of operational amplifier, i) Differentiator ii) Integrator iii) Voltage follower                                                                                                       | 7 | L1 | CO2 |
|     | c. | Write a note on Ideal characteristics of an operational amplifier.                                                                                                                                                                               | 5 | L1 | CO2 |

## BESCK104C/BESCKC104

|     |    | BESCHIVE                                                                                                                                                            |    |      |      |
|-----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|------|
|     |    | Module – 3                                                                                                                                                          | 7  | L1 ( | CO3  |
| .5  | a. | State and prove Demorgan's theorem with its truth table.                                                                                                            | 6  | L3 ( | CO3  |
|     | b. | i) Subtract using 10's compliment method $M = 72532, N = 03250$ ii) Subtract using 2's complement method $M = 1010100, N = 1000100$                                 | 22 |      |      |
|     | c. | With the help of truth table; explain the operation of full adder with sum and carry expressions, along with circuit diagram.                                       | 7  | L2   | CO3  |
|     |    | OR                                                                                                                                                                  |    | T 0  | 002  |
| 2.6 | a. | Convert i) $(306.D)_{16} = (?)_2$<br>ii) $(41)_{10} = (?)_2$<br>iii) Compute One's (1's) complement of $(11101)_2$<br>iv) Compute 9's compliment of $(0.3267)_{10}$ | 8  | L3   | CO3  |
|     | b. | Simplify the following:  i) $x(x'+y)$ ii) $xy + x'z + yz$                                                                                                           | 6  | L3   | CO3  |
|     | c. | Mention any 3 theorem of Boolean Algebra and prove each of them.                                                                                                    | 6  | L1   | CO3  |
|     |    | Module – 4                                                                                                                                                          | -  | 1.2  | CO4  |
| Q.7 | a. | Compare embedded system and general computing system (any 5)                                                                                                        | 6  | L2   | CO4  |
|     | b  | List the comparison between Microprocessor and Microcontroller.                                                                                                     | 6  | L2   | CO4  |
|     | c. | Write a note on classification of embedded system, also provide application of embedded system.                                                                     | 8  |      | 004  |
|     |    | OR CIGC and DISC processors                                                                                                                                         | 6  | L2   | CO4  |
| Q.8 | a  |                                                                                                                                                                     |    |      | 604  |
|     | b  | . With a neat block diagram, explain an instrumentation and control system.                                                                                         | 8  |      | CO4  |
|     | C  | i) Sensors ii) Actuators iii) / segment LED Display.                                                                                                                | 6  | L2   | CO4  |
|     |    | Module – 5                                                                                                                                                          | 8  | L2   | COS  |
| Q.9 |    | Brief about modern communication system with its block diagram.                                                                                                     |    | 5 L3 |      |
|     |    | Consider the following binary data 1100101 and sketch the ASK, FSK and PSK modulated waveforms.                                                                     |    |      |      |
|     |    | Explain with a neat diagram, the concept of Radio wave propagation and it different types.                                                                          | S  | 6 L2 | CO   |
|     |    | OR                                                                                                                                                                  |    |      | 000  |
| Q.1 | 10 | a. List the advantages of Digital communication over analog communication.                                                                                          | _  | 6 L  |      |
|     |    | <ul> <li>b. Describe about radio signal transmission and multiple access techniques.</li> </ul>                                                                     |    | 7 L  |      |
|     |    | c. Write a note on different types of a modulation and briefly describe each in detail.                                                                             | 1  | 7 L  | 2 CO |