

BCHEC102/202

First/Second Semester B.E./B.Tech. Degree Examination, Nov./Dec. 2023

Applied Chemistry for Civil Engg Stream

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Explain the properties and applications of iron alloys.	07	L1,	CO1
				L2	
	b.	Explain the testing of cement by EDTA method.	07	L2	CO1
	c.	What are refractories? Mention the properties and applications of	06	L2	CO1
		refractories.			
		OR			
Q.2	a.	Explain the properties and applications of aluminium alloys.	07	L1	CO1
	b.	Describe the setting and hardening process in cement.	07	L3	CO1
	c.	Describe the classification of glass based on chemical composition.	06	L1,	CO1
				L2	
		Module – 2			
Q.3	a.	Explain the construction and working of photovoltaic cell.	07	L2	CO ₂
	b.	Explain electrochemical theory of corrosion of steel in concrete.	06	L2	CO2
	c.	Explain the construction and working of Li-ion battery.	07	L2	CO ₂
		OR			
Q.4	a.	Define and explain the following types of corrosion:	07	L2	CO2
		i) Differential aeration corrosion ii) Stress corrosion			
	b.	Explain the following methods of controlling of corrosion:	06	L2	CO ₂
		i) Sacrificial anode method ii) Galvanization			
	c.	Explain the construction, working and applications of Methanol - Oxygen	07	L2	CO ₂
		fuel cell.			
		Module – 3			
Q.5	a.	Define nanomaterials. Explain the synthesis of nanomaterials by sol-gel	07	L1,	CO3
		method.		L2	
	b.	25 ml of sewage water was acidified and refluxed with 10ml of K ₂ Cr ₂ O ₇ .	07	L2	CO3
		The unreacted K ₂ Cr ₂ O ₇ consumed 15ml of 0.2 N FAS. In a blank titration			
		10ml of K ₂ Cr ₂ O ₇ consumed 20ml of 0.2 N FAS. Calculate COD of			
		sewage.	0.5		000
	c.	Explain softening of water by ion exchange method.	06	L2	CO3
		OR_		T	000
Q.6	a.	Explain the size dependent properties of nanomaterials with example.	07	L2	CO ₃
		i) Surface area ii) Catalytic property.	0.5		004
	b.	Describe the properties and engineering applications of	06	L2	CO3
		i) Carbon nanotubes ii) Graphene			500
	c.	The standard hard water contains 15g of CaCO ₃ per liter. 20ml of this	07	L2	CO3
		required 25 ml of EDTA solution. (i) 100 ml of sample of water required			
		18ml of solution (ii) The same sample after boiling required 12ml of			
		EDTA solution. Calculate the temporary hardness of the given sample of			
		water in terms of ppm.			

		Module – 4			
Q.7	a.	What are polymers? Explain condensation polymerization and addition polymerization with examples.	07	L2	CO4
	b.	What are polymer composites? Explain properties and applications of Fiber Reinforced Polymer Composites (FRPC).	06	L2	CO4
	c.	Explain the synthesis, properties and applications of polyethylene.	07	L2	CO4
		OR			
Q.8	a.	Explain the synthesis of polypropylene and Nylon fiber.	06	L1, L2	CO4
	b.	What are biodegradable polymers? Explain the synthesis and applications of polylactic acid.	07	L2	CO4
	c.	In a polymer sample, 20% molecules have molecular mass 15000 g/mol, 35% molecules have molecular mass 25000 g/mol and remaining molecular mass 20000 g/mol. Calculate the number average and weight average molecular mass of polymer.	07	L2	CO4
		Module – 5			
Q.9	a.	Explain the terms involved in phase rule with examples.	07	L2	CO5
	b.	Explain the estimation iron using potentiometric sensors.	07	L2, L3	CO5
	c.	Explain the determination of pH of soil sample using pH (meter) sensors.	06	L2	CO5
		OR	0.00	- 4	60.
Q.10	a.	With neat diagram describe two component lead-silver system.	07	L1, L2	CO5
	b.	Explain the instrumentation and applications of conductometric sensors (conductometric titration)	07	L2	CO5
	c.	What is phase rule? Explain phase, component and degree of freedom.	06	L2	CO5
		2 of 2			
		2 of 2			