MAKE-UP EXAM

	3 10 11		Att.	
ÚSN				BCHES102/202
O Di	1 2 3			

First/Second Semester B.E./B.Tech. Degree Examination, Nov./Dec. 2023 Applied Chemistry for CSE Stream

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	What is conductometric sensor? Explain its working principle and two applications.	07	L1	CO1
	b.	Define electrochemical sensor? Explain working principle of	07	L1	CO ₁
		electrochemical sensors and its application?			
	c.	What is electrochemical gas sensors SO _x ? Explain electrode reactions and	06	L1	CO ₁
		its application.			
		OR			
Q.2	a.	What is electrochemical gas sensors NO _x ? Explain in detail working principle and its application.	07	L1	CO1
	b.	Explain construction working and application of lithium-ion battery and its	07	L2	CO1
		advantages and its application.			
	c.	What is disposable sensors? Explain in detail working principle in the	06	L1	CO1
		detection of biomolecules with an example.			
		Module – 2			
Q.3	a.	Discuss in detail basic concepts of electronic memory classification.	07	L2	CO2
	b.	What are the types of organic / inorganic memory devices are used in	07	L1	CO2
		computers with example?			
	c.	Write briefly about electronic memory device (i) Transistors (ii) Capacitors	06	L1	CO ₂
		OR			
Q.4	a.	What are liquid crystals display? Explain classification, properties and its	07	L1	CO2
		application in liquid crystal display technique.	8		
	b.	Explain the properties and applications of organic light emitting diode in	07	L2	CO2
		details.	141		
	c.	Discuss the properties and application of Quantum light emitting diodes in	06	L2	CO2
		detail.			
		Module = 3			1
Q.5	a.	Define metallic corrosion. Explain the electrochemical theory of corrosion taking iron as example.	07	L1	CO3
	b.	Define anoding. Explain the process of anoding of aluminium with	07	L1	CO3
		electrode reaction and its application.			
	c.	A steel of area 100 inch ² is exposed to air near the seashore. After 1 year it	06	L3	CO3
		was found that the steel sheet has lost 485 g due to corrosion. What is the			
		value of CPR in mpy and in mmpy? Can such steel sheet applicable for the			
		construction purpose where the steel sheet is exposed?			
		(Given area $A = 100 \text{ inch}^2$, total weight lost $W = 485 \text{ g}$, $T = 1 \text{ year}$,			
		$D = 7.9 \text{ g/cm}^3$, $K = 87.6 \text{ mmpy}$)			

	(4)				
		OR	0.5	T 1	002
Q.6	a.	application of calomel electrode.	07		CO3
	b.	Explain theory, instrumentation of potentiometric estimation of ferrous ammonium sulphate and its applications?	07	L2	CO3
	c.	A concentration cell is constructed by dipping copper rods in 0.001 M and 0.1 M copper sulphate solutions. Calculate EMF of cell at 298 K.	06	L3	CO3
		Module – 4			
Q.7	a.	Define conducting polymers? Explain synthesis and conducting mechanism of polyacetylene and its application.	07	L1	CO4
	b.	Explain the synthesis, properties and commercial applications of Kevlar.	07	L2	CO ₄
	c.	A polymer has the following composition 100 molecular mass 1000g/mol, 200 molecules of molecular mass 2000g/mol and 500 molecules of molecular mass 5000g/mol. Calculate the number and weight average, molecular weight.	06	L3	CO4
		OR			
Q.8	a.	Define PV Cell. Explain construction working with diagram and its advantages and applications.	07	L1	CO4
	b.	Explain generation of energy (green hydrogen) by electrolysis of water splitting and its applications.	07	L2	CO4
	c.	Explain any four advantages and disadvantages of hydrogen production sustainability.	06	L2	CO4
444.9		Module – 5			
Q.9	a.	What is E-waste? Mention the source of E-waste and explain the need for e-waste management.	07	L1	CO5
	b.	Explain thermal treatment and pyrometallurgical methods of direct recycling from E-waste.	07	L2	CO5
	c.	Explain the five ill effects of toxic materials used in manufacturing electrical and electronic E-waste in details.	06	L2	CO5
		OR	1	1	_~~-
Q.10	a.	Explain the extraction of Gold from E-waste in detail steps involved.	07	L2	COS
	b.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	07	L2	CO5
	c.	Write brief note on role of stakeholder for example producer, consumer, recycler and statutory bodies.	06	L1	COS