

11	01	1
$\mathbf{p}_{\mathbf{I}}$	91	. 1

Reg. No.				

II Semester M.Sc. Degree Examination, October - 2023

CHEMISTRY

Inorganic Chemistry-II

Paper : CH - 201

(CBCS Semester Scheme 2019-2020 onwards)

Time: 3 Hours

Maximum Marks: 70

Instructions to Candidates:

Answer question No. 1 and any five of the remaining.

1. Answer any Ten of the following questions.

 $(10 \times 2 = 20)$

- a. Explain chelate effect on stability of metal complexes.
- b. Distinguish between metal hydride and metal dihydrogen complexes.
- c. Explain Irving William series.
- d. What is CFSE? Calculate CFSE of the complex $[Fe(CN)_6]^{4-}$.
- e. Sketch the crystal field spitting of d orbitals in trigonal bipyramidal square pyramidal geometry. State the selection rules in electronic spectroscopy.
- f. State the selection rules in electronic spectroscopy.
- g. Calculate the number of microstates for Cr(III) and Ni(II) configuration.
- h. What are the geometries of metal complexes whose coordination numbers are 3 and 5.
- i. Why is $[Mn(H_2O)_6]^{2+}$ pale pink in colour?
- j. Give the reason for $\left[Cr(NH_3)_6\right]^{3+}$ in water shows two bands around 475 and 365 nm.
- k. What is meant by spin cross over? Mention a system exhibiting it.
- 1. State and explain Kasha's rule.

[P.T.O.

- **2.** a. Describe the determination of stability of metal complex by spectrophotometric method.
 - b. What are metal nitrosyl complexes? Explain various types of bonding in metal nitrosyl complexes?
 - c. Illustrate the bonding in tertiary phosphine complexes of transition metals.(4+3+3=10)
- 3. a. How does the crystal field theory explain the formation of low spin and high spin octahedral complex? Point out the limitations of CFT.
 - b. Explain the bonding in metal carbonyl complexes with suitable example. (5+5=10)
- **4.** a. Explain various factors affecting Δ_o values in transition metal octahedral complexes.
 - b. Construct an Orgel diagram for a d^2 configuration under octahedral crystal field and discuss its important features.
 - c. What do you mean by nephelauxetic effect? How does it relate with delocalization of metal ligand bond? (4+3+3=10)
- 5. a. Explain the following:
 - i. Ferromagnetism and
 - ii. Anti ferromagnetism.
 - b. Write a brief note on photo substitution reactions in Cobalt (III) complexes.
 - c. Illustrate on the magnetic properties of Lanthanide metal complexes. (4+3+3=10)
- 6. a. Define the term magnetic susceptibility and discuss the VSM method to measure the magnetic susceptibility.
 - b. Write a short note on charge transfer transitions.
 - c. Explain Jahn Teller distortion in copper complexes. (4+3+3=10)
- 7. a. The electronic absorption spectrum of $d^8 \left[Ni(H_2O)_6 \right]^{2+}$ displays bands at 8,700, 14,500 and 25,200 cm⁻¹. Draw the appropriate Orgel diagram and assign the bands to different transitions. Calculate Δ , β and B' (B of Cr³⁺ = 918 cm⁻¹).
 - b. Discuss the electronic transitions in $\left[Cr(H_2O)_6\right]^{3+}$ with the help of Orgel diagram. What are the limitations of Orgel diagram? (4+6=10)
- 8. a. Obtain the relationship between stepwise and overall stability constant of a complex.
 - b. Write a brief note on the following:
 - i. Spin orbit coupling.
 - ii. Jablonski diagram.

(4+6=10)

