|--|--|

LIBRARY				.35	155	528
	 -		••			
Reg. No.	1 / / .	2	5 5 5			

V Semester B.C.A. Degree Bramination, March/April - 2023

FOU E OF

COMPUTER APPLICATIONS

Theory of Computation

(CBCS Scheme 2019-20)

Time: 3 Hours

Instructions to Candidates:

Answer all Sections.

SECTION-A

Answer any TEN questions. Each question carries 2 marks.

 $(10 \times 2 = 20)$

Maximum Marks:100

- 1. Define DFA with mathematical representation.
- 2. Define transition table. Give an example.
- 3. What is trap state? Give an example.
- 4. Define Regular Expression.
- 5. State Arden's theorem.
- 6. Define Grammar. Give an example.
- 7. Define Push Down Automata.
- 8. What is Parsing (Derivation) and its types.
- 9. Define CNF.
- 10. Define Left recursion.
- 11. Define Turing machine.
- 12. Define Post correspondence problem.

PTO

SECTION-B

Answer any FIVE questions. Each question carries 5 marks.

 $(5 \times 5 = 25)$

- 13. Differentiate between DFA, NFA and ∈-NFA.
- 14. Construct a DFA to accept the strings of a's and b's not ending with the substring abb.
- 15. Obtain a regular expression for the finite Automata shown below (using Kleene's theorem).

- 16. Prove the given Language is not a regular. $L = \{ww^R / w \in (a+b)^T\}$.
- Obtain the Left most derivation and right most derivation for the string 00112. The production 17. rules are given by

$$P = \{$$

$$S \rightarrow AB$$

$$A \rightarrow 01 \mid 0A1$$

$$B \rightarrow \in \mid 2B$$

$$\}$$

- Write a note on Chomsky hierarchy. 18.
- Show that the given grammar is ambiguous. 19.

$$E \rightarrow E+E$$

$$E \rightarrow E-E$$

$$E \to E*E$$

$$E \rightarrow E/E$$

$$E \rightarrow (E)$$

$$E \rightarrow id$$

20. Explain types of Turing machine.

SECTION-C

Answer any THREE questions. Each question carries 15 marks.

 $(3 \times 15 = 45)$

21. Convert the following NFA to its equivalent DFA.

22. Minimize the following DFA.

•	•		
	δ	0	1
\rightarrow	A	В	D
	В	C ,	Е
	C	В	E
٠	D	\mathbf{C}	E
*	Е	E	E

- 23. Obtain the PDA to accept the language $L = \{a^n \ b^n \mid n \ge 1\}$.
- 24. Consider the following grammar.

 $S \rightarrow 0A/1B$

 $A \rightarrow 0AA/1S/1$

 $\mathrm{B} \to 1\mathrm{BB/0S/0}$

Obtain the grammar in CNF.

(10)

25. a) Eliminate the unit productions from the given grammar

 $S \rightarrow A 0/B$

 $B \rightarrow A/11$

 $A \rightarrow 0/12/B$

(5)

b) Explain the various applications of Regular expression.

SECTION-D

Answer any ONE question. Each question carries 10 marks.

 $(1\times10=10)$

- 26. Construct a ∈-NFA for the regular expression (a+b)* aa (a+b)*
- 27. Obtain the Turing machine to accept the language $L = \{0^n \mid n \geq 1\}$

Reg. No.				

V Semester B.C.A. Degree Examination, April - 2022

COMPUTER SCIENCE

Theory of Computation (CBCS Scheme)

Time: 3 Hours

Instructions to Candidates:

Answer all sections.

SECTION - A

Answer any 10 questions. Each question carries 2 marks.

 $(10 \times 2 = 20)$

- What is Finite Automata? Mention its types. 1.
- Define trap state? 2.
- State any two differences between DFA and NFA. 3.
- Draw a DFA to accept strings of a's & b's having atleast one a. 4.
- State Arden's Theorem. 5.
- Obtain a regular expression representing strings of a's and b's having length 2. 6.
- State pumping lemma for regular languages. 7.
- Define grammar in finite Automata. 8.
- Define LMD and RMD. 9.
- 10. Define CNF.
- List the properties of Regular languages. 11.
- Define Post correspondence problem. 12.

SECTION-B

Answer any five questions. Each question carries five marks.

 $(5 \times 5 = 25)$

- Mention five differences between DFA, NFA ε NFA. 13.
- Construct a DFA to accept the strings of a's and b's ending with the string abb. 14.
- Explain various applications of finite Automata. 15.
- Obtain the DFA for the following NFA using Lazy Evaluation method. 16.

P.T.O.

- 17. Obtain an ε -NFA which accepts strings of a's and b's starting with the string ab.
- 18. Explain Chomsky's Hierarchy.
- 19. Is the following grammar ambiguous?

$$E \rightarrow E + E$$

$$E \rightarrow {}^{\bullet}E + E$$

$$E \rightarrow E * E$$

$$E \rightarrow E / E$$

$$E \rightarrow (E)/I$$

$$I \rightarrow id$$

20. Explain Haltinig problem of Turing machine.

SECTION-C

Answer any three questions. Each question carries 15 marks.

 $(3 \times 15 = 45)$

21. Convert the following ε -NFA to its equivalent DFA.

22. Minimize the states of the following DFA

	S	a	.b
\rightarrow	Α	В	F
	\mathbf{B}	G	, C , A
*	C,	A	C
	D	. C	G
	Е	Н	F
	F	С	G
	G	G	E
	Н	G	· C

23. Obtain Regular expression for the following DFA.

24. Convert the given CFG to CNF

$$S \rightarrow OA \mid 1B$$

$$A \rightarrow OAA \mid 1S \mid 1$$

$$B \rightarrow 1BB \mid OS \mid 0$$

25. Obtain PDA to accept the language $L = \{a^n b^n | n \ge 1\}$ by a final state.

SECTION - D

Answer any one question. Each question carries ten marks.

 $(1 \times 10 = 10)$

- 26. "Draw a DFA to accept decimal strings divisible by 3" using divisible by k method.
- 27. Obtain the Turing Machine to accept the language $L = \{0^n 1^n | n \ge 1\}$.