



# DCCA103

| Reg. No.  | , , |  |  |      | . q |
|-----------|-----|--|--|------|-----|
| 1108.110. |     |  |  | <br> |     |

Semester Degree Examination, April - 2023

# COMPUTER APPLICATIONS

Data Structures

Paper: CA-C3T

(NEP Scheme)

Time: 21/2 Hours

Maximum Marks: 60

Instructions to Candidates:

Answer any Four questions from each part.

## PART-A

Answer any Four questions. Each question carries 2 marks.

 $(4\times2=8)$ 

- 1. What is Data Structure? List out its types.
- 2. Define: Flow(), Ceil().
- 3. Define ADT.
- 4. What is AVL tree? Give an example.
- 5. Write any two difference between Binary tree and binary search tree.
- 6. Define any two collision Resolution methods in Hashing.

## PART-B

Answer any Four questions. Each question carries 5 marks.

 $(4 \times 5 = 20)$ 

- 7. Explain Asymptotic notations.
- 8. Explain traversing operation in a singly linked list?
- 9. Write an algorithm for stack push and PoP operation and explain.
- 10. Write an algorithm for Pre order traversal explain.
- 11. Construct a max heap for the given numbers: 13, 86, 43, 38, 54, 23, 08 and 63. Explain every step.
- 12. Write an algorithm for insertion sort and explain using given numbers.

56, 23, 54, 12, 66, 46, 89.

[P.T.O.

# PART-C

Answer any Four questions. Each question carries 8 marks.

 $(4 \times 8 = 32)$ 

- 13. Write an algorithm for linear search and binary search.
- 14. Write an algorithm to convert infix to portfix and explain by using the example below

$$A+(B*C-(D/E\uparrow F)*G)*H\ .$$

15. a. Distinguish between linear queue and circular queue.

(3)

b. Explain stack as ADT. How a stack can be represented using Arrays.

(5)

- 16. Show the steps to sort the elements 45, 36, 15, 92, 35, 71 using bubble sort.
- 17. Explain stepwise BFS concept for the below graph.



18. a. Explain different ways of representing graphs.

(4)

b. Explain the technique to resolve Hash collision.

(4)







# DCCA103

| Reg. No. | *9 |     |  |  | 4. |
|----------|----|-----|--|--|----|
| 1        |    | 77. |  |  |    |

I Semester B.C.A. Degree Examination, May/June - 2022

# COMPUTER SCIENCE

Data Structure

(NEP Scheme 2021)

Paper: CA-C3T

Time: 21/2 Hours

Maximum Marks: 60

Instructions to Candidates: Answer all Sections.

#### SECTION - A

I. Answer any Four questions. Each question carries Two marks.

 $(4 \times 2 = 8)$ 

- 1) Define Abstract Data Type.
- 2) What is sparse matrix?
- 3) Define Linked list.
- 4) Define
  - a) Directed graph
  - b) Weighted graph.
- 5) Define Binary Search.
- 6) Define Hashing.

### SECTION - B

II Answer any Four questions. Each question carries Five marks.

 $(4 \times 5 = 20)$ 

- 7) Explain traversal of singly linked list
- 8) Explain circular queue with example.
- 9) Write an algorithm for inserting values in circular queue.
- 10) Define Binary search Tree. Give example.
- 11) Explain Linear Search algorithm
- 12) Explain Topological sorting.

IP.T.O.



# SECTION - C

| III. | Ans | wer: | any Four questions. Each question carries Eight marks                   | $(4 \times 8 = 32)$ |
|------|-----|------|-------------------------------------------------------------------------|---------------------|
|      | 13) | a)   | Explain the different types of data Structures.                         | (4)                 |
|      |     | b)   | Write a note on Asymptotic notations.                                   | (4)                 |
|      | 14) | a)   | Evaluate Postfix expression. Show step clearly 6, 5, 3, +, *, 12, 3, /, | - (4)               |
|      |     | b)   | Write algorithms for                                                    |                     |
|      |     |      | i) Push                                                                 | *                   |
|      |     |      | ii) Pop operations for stack                                            | (4)                 |
|      | 15) | Wh   | at is Recursion? Write an algorithm for tower of Hanoi Problem.         | (8)                 |
|      | 16) | Wri  | te short notes on :                                                     | (8)                 |
|      |     | a)   | Lexicographic Search Trees                                              |                     |
|      |     | b)   | B - Trees.                                                              |                     |
|      | 17) | a)   | Define Sorting                                                          | (2)                 |
|      |     | b)   | Write a C Program to sort an array using insertion sort technique.      | (6)                 |
|      | 18) | Exp  | plain hashing techniques and techniques for collision resolution.       | (8)                 |







DCCA101

I Semester B.C.A. Degree Examination, April - 2023

# COMPUTER APPLICATIONS

Discrete Structures

Paper: CA-CIT

(NEP 2021 Onwards Scheme)

Time: 21/2 Hours

Maximum Marks: 60

Instructions to Candidates:

Answer any Four questions from each part.

## PART-A

Answer any Four questions. Each question carries 2 marks.

 $(4 \times 2 = 8)$ 

- 1. Define power set with an example.
- 2. Construct the truth table for the proposition  $(p \lor \neg q)$ .
- 3. Define Equivalence Relation.

4. If 
$$\begin{vmatrix} 1 & 2 & -1 \\ 3 & x & -2 \\ 1 & 2 & -3 \end{vmatrix} = 0$$
 then find x?

- 5. Define pseudo graph with an example.
- 6. Write the planar representation of graph  $K_4$ .

### PART-B

Answer any Four questions. Each question carries 5 marks.

 $(4 \times 5 = 20)$ 

- 7. Show that the proposition  $(p \rightarrow q) \leftrightarrow p \lor q$  is a Tautology.
- 8. Prove by mathematical induction  $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ ,  $\forall$  positive integers 'n'.
- 9. State and prove Pigeonhole principle.

[P.T.O.



- 10. Find the rank of the matrix  $\begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & 2 & 3 & 14 \\ 1 & 4 & 7 & 30 \end{bmatrix}$
- 11. Find the inverse of the matrix  $\begin{bmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & -7 \end{bmatrix}$
- 12. Define the following terms.
  - i) Path
  - ii) Circuit
  - iii) Walk
  - iv) Trail
  - v) Loop

# PART-C

Answer any Four questions. Each question carries 8 marks.

 $(4 \times 8 = 32)$ 

- 13. a) If  $A = \{1, 3, 5, 7, 6\}$ ,  $B = \{2, 4, 6, 1, 7\}$  and  $C = \{3, 7, 11, 5\}$  verify  $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ .
  - b) In a group of 80 people, 42 like Coffee, 60 like Tea and each person like atleast one of the two drinks. Find how many people like both Coffee and Tea? (4+4)
- 14. a) Let  $A = \{1,2,3,4,6\}$ , R is a relation on A defined by  $R = \{(a,b): a,b \in A \text{ "a divides b"}\}$  Write (i) matrix representation of R. (ii) Digraph of R.
  - b) If  $f: R \to R$  is defined by f(x) = 4x + 5 then show that f is invertible. (4+4)
- 15. a) Write the converse, Inverse and contrapositive of the given statement "If two integers are equal then their squares are equal".
  - b) How many arrangements can be made from the letters of the word "ASSASSINATION"? In how many of these arrangements do the four S's not come together? (3+5)

- 16. a) If  $A = \begin{bmatrix} 5 \\ 2 \\ -3 \end{bmatrix}$  and  $B = \begin{bmatrix} -1 & 4 & 6 \end{bmatrix}$  show that (AB)' = B'A'.
  - b) Solve the following system of equations

$$3x-2y+3z=8$$

$$2x+y-z=1$$

$$4x-3y+2z=4$$
(3+5)

17. a) Examine whether the following graphs are Isomorphic (or) not



- b) Define spanning tree with an example.

  (6+2)

  (8)
- 18. Find the minimum weight spanning tree by Prim's Algorithm.

