			100000	3.5	
	1 1 1	1		100	,
D 37	1			100	1
Reg. No.	1 1	1 1			- 1
102.110.	1 1	1 1			
		1 1			

I Semester M.Sc. Degree Examination, June/July - 2022

CHEMISTRY

Inorganic Chemistry - I

(CBCS Scheme New Freshers -2019-20 Onwards)

Paper: CH-101

Maximum Marks: 70

Time: 3 Hours

Instructions to Candidates:

Answer question No. 1 and any Five of the following.

Answer any Ten of the following:

 $(10 \times 2 = 20)$

- 1. a) What is synergic bonding? Explain with an example.
 - b) If z- is the internuclear axis, which linear combinations of s, p and d atomic orbitals will result in the formation of σ , π and δ orbitals?
 - c) Based on electronegativity, arrange the following bonds in the order of decreasing polarity: N-O, N-N, N-P and C-N. Justify your answer.
 - d) What are Amphiboles? Write their structures.
 - e) Give the preparation and structure of $\left[Fe(C_2B_9H_{11})_2\right]^{2-}$
 - f) Draw the structure and mention the composition of benitoite.
 - g) Give the applications of heteropoly acids.
 - h). Write the equation for self-ionization of liq. N₂O₄. Justify the ionization with any one reaction.
 - i) Give the meaning of symbiosis with an example.
 - j) Distinguish between β -and β + decay. Give one example in each case.

P.T.O.

- k) What are the factors favouring M-M bond?
- Calculate the binding energy per nucleon for 27^{59} Co with a mass of 58.95182 amu. (Mass of H atom = 1.008142 amu and neutron is 1.008982 amu).
- 2. a) Identify the number of lone-pair of electrons present in the following: CIF3, ICl₄ and l₃. Predict their structures using VSEPR theory.
 - b) Derive the limiting radius ratio for octahedral arrangement.
 - c) Explain Fajan's rules. Based on these rules, explain why AlCl₃ Shows higher melting point than AlBr₃ and AlI₃. (4+3+3=10)
- 3. a) Discuss the synthesis, structure and bonding in borazine. Why is it called inorganic benzene?
 - b) Why do zeolites exhibit molecular sieving property? Explain with examples.
 - c) What are carboranes? How are they classified? Give one example for each class. (3+4+3=10)
- 4. a) Write a short note on MCD.
 - b) Discuss the theoretical basis of HSAB concept. What are its limitations?
 - c) Predict the bases as hard or soft in the reaction which proceed from left to right

$$CH_{3}Hg^{+} + H^{+}R_{2}S \rightarrow CH_{3}HgSR_{2}^{+} + H^{+}$$
 $CH_{3}HgNH_{3}^{+} + H^{+} \rightarrow NH_{4}^{+} + CH_{3}Hg^{+}$
(3+4+3=10)

- 5. a) Explain the structure and bonding involved in a dinuclear $\left[\operatorname{Re}_2 Cl_8\right]^{2-}$
 - b) Explain the salient features of shell model of nucleus. Predict the nuclear spin and parity of $^{33}_{16}S$ and $^{43}_{20}Ca$ nuclides. (5+5=10)
- 6. a) Write Kapustinskii's equation and define the terms in it. Using this equation calculate the lattice energy of KNO₃. (Given radius of $K^+=1.38A^\circ$ radius of $NO_3=1.89A^\circ$).
 - b) Sketch the M.O. Energy level diagram of ICL molecule and explain its features.
 - c) Discuss the structures of zinc blende and wurtzite, (3+3+4=10)
- 7. a) Discuss the synthesis, structure and bonding in S_4N_4 compounds.
 - b) Explain the preparation bonding and structure of (PNCl₂)₃
 - c) Give examples of any three isopolymolybdate ions. At what pH, these are stable? (3+4+3=10)

- 8. a) Explain cotton effect with an example.
 - b) Distinguish between low nuclearity and high nuclearity carbonyl clusters.
 - c) Calculate the decay constant, mean life time and half life of a radio nuclide where activity diminished by 10% in 100 days. (3+4+3=10)

