

62134

	 T -		
Reg. No.			

IV Semester M.Sc. Degree Examination, September/October - 2022

PHYSICS

Condensed Matter Physics I (Elective)

(CBCS 2020-21 Scheme)

Paper: 403b

Time: 3 Hours

Maximum Marks: 70

Instructions to Candidates:

Answer all questions.

PART-A

- 1. a) What is Bloch function? Discuss the Kroning-Penney model for energy bands in solids.
 - b) Discuss de Hass-van Alphen effect.

(10+5)

(OR)

- 2. a) An insulator has an optical absorption which occurs for all wavelengths shorter than $1800\,\text{A}^\circ$. Find the width of the forbidden energy band for this insulator.
 - b) Describe the Anomalous skin effect for determining the Fermi surface of a copper. (5)
- 3. a) Discuss the concept of Brillouin zones as applicable to one-dimensional monatomic lattice. (10)
 - b) Derive Debye's formula for the specific heat of solids. Comment on the result at low temperature. (5+10)

(OR)

- **4.** a) Derive vibrational modes of a diatomic linear lattice. Name the different branches of the dispersion relation curve.
 - b) Discuss the limitations of Einstein theory of lattice specific heat. (10+5)

[P.T.O.

- 5. a) Explain photovoltaic effect.
 - b) Describe the analysis of elastic compliance and stiffness constants in a cubic crystal. (5+10)

(OR)

- **6.** a) What is photoconductivity? Explain two of its applications.
 - b) Explain with neat diagram, the experimental determination of elastic constants using ultrasonic interferometer for solids. (5+10)

PART-B

7. Answer any Five of the following.

 $(5 \times 5 = 25)$

- a) Explain the concept of effective mass of electron.
- b) The Fermi energy of copper is 7eV. Calculate i) The Fermi momentum of electrons in copper and ii) the de-Broglie wavelength of electron.
- c) Discuss group velocity of harmonic wave train.
- d) What are the short comings of Einstein's theory?
- e) Calculate the number of photons from green light of mercury $(\lambda=4961\text{A}^{\circ})$ to do one joule of work.
- f) Discuss the behavior of elastic waves in [110] direction.

