

Reg. No.			5 . J		

II Semester M.Sc. Degree Examination, November - 2022

PHYSICS

Quantum Mechanics - II

(CBCS -Repeaters Scheme)

Paper: P-203

Time: 3 Hours

Maximum Marks: 70

Instructions To Candidates:

All Parts are Compulsory.

PART - A

Answer any Four of the following:

 $(4 \times 5 = 20)$

60963

- 1. State and prove variational principle.
- 2. Explain Zeeman Effect using the perturbation theory.
- 3. Show that the differential scattering cross section can be expressed as the square of the scattering amplitude.
- 4. Show that the linear momentum operator is the generator of infinitesimal linear transformations.
- 5. Show that time reversal operator is antilinear.
- 6. Write a note on Negative energy states of a free particle in Dirac's theory.

PART-B

Answer any Four of the following:

 $(4 \times 10 = 40)$

- 7. Discuss the time-independent perturbation theory and obtain the expression for first order correction to energy of a non-degenerate system.
- **8.** Discuss the time dependent perturbation theory with a constant perturbation. Deduce the Fermi's Golden rule.
- 9. Adopting the method of partial waves, obtain an expression for scattering cross section in terms of scattering angle and phase shift.

[P.T.O.

- 10. a) Explain the symmetry transformations in quantum mechanics.
 - b) Discuss the classification of particles based on the eigenvalues of the permutation operator. (5+5)
- 11. Set up Klein-Gordon relativistic wave equation of a free particle. Discuss in detail, the difficulties present in its interpretation.
- 12. Show that the orbital angular momentum, L of a Dirac particle is not a constant of motion. Describe how the addition of appropriate spin operation makes the sum J=L+S, a constant of motion.

PART-C

Answer any Two of the following:

 $(2 \times 5 = 10)$

- 13. Calculate the first order perturbation correction to the energy of a harmonic oscillator with a perturbation $V=\frac{1}{2}b x^2$ ('b' is a constant).
- 14. Using the I Born approximation, evaluate the differential scattering cross section and arrive at Rutherford's scattering formula, for scattering by a screened coulomb potential,

$$v(r) = \frac{-Z_1 Z_2 e^2}{r} \exp(-ar)$$
 where α is a screening constant Given
$$\int_0^\infty \sin(qx) e^{-ax} dx = \frac{q}{q^2 + a^2}$$

- 15. Show that the helium atom in its ground state can exist only in singlet state.
- 16. Prove that the operator $c\alpha$, where α stands for Dirac matrix, can be interpreted as the velocity operator.

