| <br> | <br> |
|------|------|



| 62 | <u> </u> | 5 | 8 |
|----|----------|---|---|
| UZ | 4        | J | O |

| ,        | <br> |  |  |  |
|----------|------|--|--|--|
| Reg. No. |      |  |  |  |

# II Semester M.C.A. Degree Examination, December - 2022

### COMPUTER SCIENCE

**Operating Systems** 

(CBCS Scheme Y2K20)

Paper: 2 MCA 1

Time: 3 Hours Maximum Marks: 70

Instructions to Candidates:

Answer ALL Parts.

## PART - A

Answer any FIVE questions.

 $(5 \times 6 = 30)$ 

- 1. What is Operating System? Explain multiprogramming and time sharing systems.
- 2. What are system calls? Briefly Point out its types.
- 3. Define semaphores. Explain Reader-Write problem with semaphore in detail.
- 4. Describe Mutual Exclusion implementation with TestAndSet().
- 5. What are monitors? Explain dining Philosopher's solution using monitor.
- 6. Describe both internal and external fragmentation problems encountered in a contiguous memory allocation scheme.
- 7. Explain swap in and swap out in two process using disk as a backing store.
- 8. Briefly describe the implementation of Access Matrix.

#### PART - B

Answer any FOUR questions.

 $(4 \times 10 = 40)$ 

9. Consider the following snapshot of a system:

| C CIIDIGG CI | 5          |     |   |     |           |
|--------------|------------|-----|---|-----|-----------|
| Processes    | Allocation | Max |   |     | Available |
|              | A B C      |     | A | B C | A B C     |
| P0           | 1 1 2      |     | 4 | 3 3 | 2 1 0     |
| P1           | 2 1 2      | •   | 3 | 2 2 | •         |
| P2           | 4 0 1      |     | 9 | 0 2 |           |
| P3           | 0 2 0      |     | 7 | 5 3 |           |
| P4           | 1 1 2      |     | 1 | 1 2 |           |

- a) Calculate the content of the need matrix.
- b) Is the system in a safe state?
- c) Determine the total amount of resources of each type. (10)

P.T.O.

| 10. | a) | Consider the following page reference stream: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, | 1, 2, 0 |
|-----|----|--------------------------------------------------------------------------------------|---------|
|     |    | 1, 7, 0, 1. How many page faults would occur for LRU and FIFO replace                |         |
|     |    | algorithms assuming 3 frames? Which one of the above is most efficient?              | (6)     |
|     | b) | Explain demand paging system.                                                        | (4)     |

# 11. Consider the following set of processes:

| Process | Arrival Time | Burst Time |
|---------|--------------|------------|
| P1      | 0            | 8          |
| P2      | 1            | 4          |
| Р3      | 2            | 9          |

Draw Gantt Chart and Compute average turnaround time and the average waiting time using FCFS, Pre-emptive SJF and RR (Quantum=4). (10)

|     |     |                                                                     | •   |
|-----|-----|---------------------------------------------------------------------|-----|
| 12. | a)  | Explain Dual Mode Operation with a neat diagram.                    | (4) |
|     | b)  | With a neat diagram explain Queueing diagram of Process Scheduling. | (6) |
| 13. | a)  | List and Explain the goals and principles of security.              | (6) |
|     | b). | Write a short note on Virtual Machines.                             | (4) |
| 14. | a)  | What is System Boot and Context Switch?                             | (4) |
|     | b)  | Discuss the features of Linux Operating System.                     | (6) |

