|--|--|

AND L	IBRAR	SUPSTITUTE STUD
S. C. C.		

(02	4	5	O

Reg. No.	,			

I Semester M.C.A. Degree Examination, July-2022

COMPUTER SCIENCE

Data Structures (CBCS Scheme)
Paper: 1MCA6

Time: 3 Hours

Maximum Marks: 70

Instructions to Candidates:

- 1) Part A: Answer any Five questions.
- 2) Part B: Answer any Four questions.

PART-Á

A. Answer any Five. Each question carries Six marks.

 $(5 \times 6 = 30)$

- 1. Define Asymptotic Notations. Explain its utility in analysis of an algorithm.
- 2. Describe briefly three types of structures used for storing Strings.
- 3. Explain linked list. Write an algorithm to count the number of nodes in a singly linked list.
- 4. Write the algorithm for push and pop stack operation. The following sequence of operations is performed on a stack: push (1), push(2), pop(), push (1), push (2), pop(), pop(), pop(), pop(), pop(), pop(). Determine the sequence of popped out values.
- 5. Define hashing, hash function and collision. Differentiate between static and dynamic hashing.

P.T.O.

1.

E

De.

eje

Kp,

VI

- Write short notes on any two of the following:
 - Topological sorting of a directed graph. a)
 - Sparse Matrix. b)
 - Lexicographic Search Trees. c)
- Write a recursive algorithm to solve factorial of a number. 7.
- 8. Traverse the given tree using inorder, preorder and postorder traversal.

PART-B

Answer any Four. Each question carries Ten marks. B.

 $(4 \times 10 = 40)$

- Calculate the number of comparisons required to match the given pattern using 9. a) Naïve string-matching algorithm.
 - Analyse how the efficiency is increased by the pre-computed tables in Boyer b) Moore algorithm with the following example. (5+5)

Text: GCAAT GCCTATGTGACC

Pattern: TATG TG

- Describe the steps to convert infix to postfix expression. a) 10.
 - Show the detailed contents of stack to convert the given infix expression $((A+B)^{C})-((D*C)/F)$ to postfix expression. Evaluate it for the given values A=6, b) B=3, C=2, D=4, F=2. Priorities are of the order C, \wedge , * & γ , + &-(5+5)
- Write an algorithm to insert a NEWNODE at the beginning of a singly linked list 11. a) and delete a node at the end of a singly linked list.
 - Differentiate between circular queue and doubly ended queue. Calculate b) the minimum number of queues required to implement a priority queue. (5+5)
- Show the Binary Search Tree that is obtained after inserting the key 8, 11, 5, 7, 9, 12. a) 6, 10, 14, 12. Redraw the tree after deleting the Root.
 - (5+5)Apply Breadth first Search (BFS) on the following graph. b)

- Illustrate the working of Heap sort algorithm on the following input: 35, 15, 0, 13.
 - Build an AVL tree with the following values: 15, 20, 24, 10, 13, 7, 30, 36, 25, 42, · b) (5+5)29.
- Show the tracing of the following list of numbers writing a merge sort 14. algorithm. 8, 2, 4, 6, 9, 7, 10, 1, 5, 3.
 - Explain the Binary Search technique using an algorithm. Search 5 in the b) list. {1, 2, 4, 5, 9, 18, 21} (5+5)

|--|--|

62456

Reg. No.	,					
5		ŀ		ı		

I Semester M.C.A. Degree Examination, June/July - 2023

COMPUTER SCIENCE

Data Structures (CBCS Scheme Y2k20)

Paper: IMCA6

Time: 3 Hours

Maximum Marks: 70

Instructions to Candidates:

Part A:- Answer any Five questions

Part B:- Answer any Four questions

PART - A

- I. Answer any Five questions. Each question carries Six marks. $(5\times6=30)$
 - 1. Define data structures. Discuss the classification of data structures.
 - 2. Explain any four string handling Functions.
 - 3. Write a program to find GCD of three numbers using recursion.
 - 4. Define Linked list. Explain its types.
 - 5. Evaluate the postfix Expression using stack.

8 3 4 + * 2/3 5 * -

- 6. Write a short note on Topological sorting.
- 7. Write an algorithm for selection sort with an Example.
- 8. Explain different types of Hash function with an example.

PART - B

- II. Answer any Four questions. Each question carries Ten marks.
 - 9. a) Explain Asymptotic Notation

(5)

b) Explain string Matching algorithm with example.

(5)

10. a) Write an algorithm for push and pop operation of a stack.

(5)

b) Convert the infix expression into postfix expression using stack.

$$((A+B) - C * (D/E)) + F$$

(5) [P.T.O.

(5)

- 11. a) Write an algorithm to insert an element to a circular queue.
 - b) Given the following traversal, draw a binary tree: (5)
 - i) In order: 4 2 5 1 6 7 3 8

 Post order: 4 5 2 6 7 8 3 1
 - E ii) Preorder: A D G C \mathbf{B} F H Inorder: D В G E A Η C
- 12. Construct AVL tree for the following data (10)
 - 21, 26, 30, 9, 4, 14, 28, 18.
- 13. a) Explain Memory representation of Graph with example. (5)
 - b) Discuss about Priority queue. (5)
- 14. Write down the steps for quick sort and show the tracing of the following list. (10)

5, 3, 8, 1, 4, 6, 2, 7.

