

15MT35

Third Semester B.E. Degree Examination, June/July 2023 Analog and Digital Electronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Sketch and explain the VI characteristics of diode with current equation and comparison with ideal, Germanium and Silicon diode. (08 Marks)
 - b. Calculate the magnitude of the diode current (I_A) for the following values of the diode junction voltage (V_{AK}) .
 - i) $V_{AK} = -0.5V$
 - ii) $V_{AK} = -0.10 V$
 - iii) $V_{AK} = 0.25V$
 - iv) $V_{AK} = 0.35V$
 - v) $V_{AK} = 0.6V$
 - vi) $V_{AK} = 0.75V$
 - vii) $V_{AK} = IV$.

The reverse saturation current, I_R of p-n junction silicon diode is 100nA. Assume the thermal voltage $V_T = 27 \text{mV}$ at T = 300 K. (08 Marks)

OR

- 2 a. Describe clipping and clamping circuits with circuit diagram and waveforms with applications. (08 Marks)
 - b. A full wave rectifier produces an rms voltages of 12V from a 50Hz line source and feeds a resistive load of 1.5Ω . If the filter uses a capacitance $C = 470\mu F$. Find the resulting
 - i) Output ripple factor
 - ii) dc output voltage V_{LDC}
 - iii) Voltage regulation
 - iv) The ripple output voltage V_r.

(08 Marks)

Module-2

- a. Evaluate the expression for gain of a first order Butterworth low pass filter. Plot the frequency response. Also mention the design steps. (10 Marks)
 - b. Evaluate the low cutoff frequency for the second order high pass Butterworth filter. Given $C_2 = C_3 = 0.0047 \mu F$, $R_2 = R_3 = 33 \text{ K}\Omega$ and also draw the circuit diagram. (06 Marks)

OR

- 4 a. With a neat circuit analyze the working of RC phase shift oscillator. Using OPAMP design a RC phase shift oscillator to have $F_0 = 2 \text{ kHz}$. (10 Marks)
 - b. Design a first order low pass filter of cut off frequency 1 kHz with a pass band gain of 2 and using frequency sealing technique convert 1 kHz cut off frequency to 1.6 kHz. (06 Marks)

Module-3

5 a. With a neat circuit and relevant waveforms analyze inverting comparator as Schmitt trigger. And also design a Schmitt trigger circuit with $V_{ut} = +3V$ and $V_{lt} = -3V$. With supply voltage of $\pm 15V$. If supply voltage is 10V(P-P). Find hysteresis voltage. (10 Marks)

b. Design a divide by 2 network using a monostable multivibrator for input trigger signal of 2 kHz and $c = 0.1 \mu F$. (06 Marks)

OR

6 a. Discuss the working of a Astable multivibrator circuit with neat block and waveforms.

(10 Marks)

b. With a neat circuit and waveforms analyze the working of a non-inverting comparator circuit. (06 Marks)

Module-4

7 a. i) By using NOR gate, implement the following gates.

1) NOT 2) OR 3) AND 4) EX-OR and EX-NOR.

(05 Marks)

ii) Implement EX-OR and EX-NOR using NAND gates.

(03 Marks)

b. i) Draw C-MOS NOR gate and C-MOS NAND gate for different input combinations A. (05 Marks)

ii) Compare TTL, C-MOS and ECL logic families. (03 Marks)

OR

8 a. Explain operation of RS-latch using NAND gate and NOR gate with circuit diagram, and different input combinations (truth – table) (08 Marks)

b. Explain the operation of J-K flip flop with diagram and different input combination using truth table and its characteristics equation. (08 Marks)

Module-5

9 a. Implement the following Boolean function using the depth understanding of MUX. f(x,y,z) = sm(1,2,4,6,7) (06 Ma)

b. Analyze the working of successive approximation type ADC with neat sketch. Also obtain the 4 bit binary representation of analog signal 10-7 V using successive approximation technique. Full scale voltage = ± 16 V. (10 Marks)

OR

10 a. Discuss the operation of weighted resistor 4 bit DAC with necessary circuit and equations.

(06 Marks)

b. Analyze the working of 2×4 decoder circuit and also design a 3×8 decoder using 2×4 decoder. (10 Marks)

* * * *