

21MT32

Third Semester B.E. Degree Examination, June/July 2023

Analog and Digital Electronics

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Write the equation for the voltage gain of a first order High Pass Active Filter and briefly discuss the circuit design procedure. (12 Marks)
 - b. Design a Low Pass filter at a cutoff frequency of 1 kHz with a Passband gain of 2. Choose $C = 0.01 \, \mu F$. (08 Marks)

OR

- 2 a. Derive the expression for the phase shift produced by an All Pass Filter. (12 Marks)
 - b. With neat circuit, frequency response diagram and with necessary equations, explain the operation of wide band pass filter. (08 Marks)

Module-2

- 3 a. With neat circuit diagram, explain the operation of wein bridge oscillator. (12 Marks)
 - b. Using a 741 op-amp with a supply of ±12V, design a RC phase shift oscillator to have an output frequency of 3.5 kHz. (08 Marks)

OR

- 4 a. Explain the operation of Schmitt trigger with neat circuit diagram, waveforms and hysteresis curve. (12 Marks)
 - b. Explain the operation of Inverting Comparator with circuit diagram and waveforms.

(08 Marks)

Module-3

- 5 a. With neat diagram, explain the pin diagram and internal architecture of 555 timer. (12 Marks)
 - b. With a neat sketch, explain how to construct a square wave generator from Astable Multivibrator. (08 Marks)

OR

- 6 a. Explain the operation of 555 time as Astable Multivibrator. (12 Marks)
 - b. How is an Monostable Multivibrator using 555 timer connected into a pulse width modulator. (08 Marks)

Module-4

- 7 a. Simplify the following Boolean equation using K-Maps.
 - (i) $f(w, x, y, z) = \sum m(1, 3, 6, 9, 11, 14, 15)$

(05 Marks)

(ii) $f(a, b, c, d) = \Pi M(0, 2, 4, 10, 11, 14, 15)$

(05 Marks)

b. Implement a Full Adder circuit using two Half Adders.

(10 Marks)

OR

Implement the function using 4:1 MUX with a, b as select lines: 8 $f(a, b, c, d) = \sum m(0, 1, 5, 6, 7, 9, 10, 15)$

(10 Marks)

Explain the operation of 3 to 8 line decoder with truth table and logic diagram.

(10 Marks)

Module-5

Explain the operation of clocked RS-flip flop using NAND gates with timing diagram and 9

b. Explain the operation of clocked D-flip flop using NAND gates with timing diagram and truth table.

OR

Explain the operation of synchronous 3-bit binary Up-counter. 10

(10 Marks)

Explain the operation of

(i) Decade counter using IC 7490

(05 Marks)

(ii) Ring counter using IC 7495

(05 Marks)