

CBCS SCHEWE

18EC61

Sixth Semester B.E. Degree Examination, June/July 2023 **Digital Communication**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Determine the Hibert transform of rectangular pulse:

$$rect(t) = \begin{cases} 1 & -\frac{1}{2} \le t \le \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$
 (04 Marks)

- b. Express band pass signal S(t) in canonical form. Also derive the schemes for obtaining in phase and quadrature components of the band pass signal S(t) and vice-versa.
- c. Explain with necessary equations, the time domain procedure for computational analysis of (08 Marks) a band pass system driven by a band pass signal.

OR

Consider a real base band signal $m(t) = 4 \cos(2t) - 6 \sin(3t)$ and a carrier signal c(t) = cos(100t). Determine a band pass signal s(t), analytic signal $s_t(t)$ and complex

envelope $\tilde{s}(t)$.

(08 Marks)

- b. Draw the power spectra of
 - i) NRZ polar signal
 - ii) Manchester signal.

(04 Marks)

Illustrate HDB3, B8ZS and B3ZS signaling schemes and mention its applications. (08 Marks)

Module-2

- Obtain the maximum likelihood decision rule for the signal detection problem. (10 Marks) 3
 - Derive the expressions for mean and variance of the correlator outputs. Also show that the correlator outputs are statistically independent. (10 Marks)

OR

Using the Gram-Schmidt orthogonalization procedure, find a set of orthonormal basis functions to represent the three signals S₁(t), S₂(t) and S₃(t) shown in Fig.Q4(a). Also express each of these signals in terms of the set of basis functions.

(10 Marks)

b. With a neat diagram, explain the correlation receiver.

(10 Marks)

Module-3

- With necessary expressions and block diagrams, explain the generation and coherent detection of QPSK signals. Also mention the shortcomings of QPSK and solution for the
 - b. Define bandwidth efficiency. Tabulate and comment on the bandwidth efficiency of M-ary PSK signals for different values of M.
 - c. What is the advantage of M-ary QAM over M-ary PSK system? Obtain the constellation of QAM for M = 4 and draw signal space diagram.

- Derive an expression for probability of error of BFSK technique. Also draw the black diagrams of BFSK transmitter and coherent BFSK receiver.
 - With a neat block diagram, explain the generation and optimum detection of DPSK signals.

Module-4

- With a neat block diagram, explain the digital PAM transmission through band limited base band channels. Also obtain an expression for inter symbol interference.
 - b. Explain the need for precoder in a duobinary signaling. Consider a binary sequence 111010010001101 is given as an input to the pre coder whose output is used to modulate a duobinary transmitting filter. Obtain the pre coded sequence, transmitted amplitude levels, the received signal levels and the decoded sequence. (02 Marks)
 - State the Nyquist condition for zero ISI.

- What is a zero forcing equalizer? With a neat block diagram, explain the operation of linear 8 transversal filter. (08 Marks)
 - Explain the design of band limited signals with controlled ISI. (04 Marks)
 - Write a note on eye diagram.

- With a neat diagram, explain the model of a spread spectrum digital communication system.
 - b. Explain the generation and demodulation of direct sequence spread spectrum signals with necessary equations and block diagram.
 - c. A direct sequence spread spectrum signal is designed so that the power ratio PR/PN at the intended receiver is 10^{-2} . If the desired $E_b/N_0 = 10$ for acceptable performance, determine the maximum value of the processing gain.

- With a neat bock diagram, explain the frequency hopped spread spectrum. (06 Marks) (10 Marks)
 - With a neat diagram, explain the IS 95 reverse link.
 - Write a note on law detectability signal transmission as an application of DSSS. (04 Marks)