

A STATE OF THE STA

18EC55

Fifth Semester B.E. Degree Examination, June/July 2023 **Electromagnetic Waves**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Derive the expression for Electric Field due to line charge of infinite length. (08 Marks)
 - b. Find the force on 100 μc charge at (0, 0, 3)m, if four like charges of 20 μc are located on the x and y axis at ±4m. (06 Marks)
 - c. Determine Electric Field at origin due to charge at 6.44×10^{-9} C located at (4, 2, -3)m in Cartesian coordinate system. (06 Marks)

OR

- 2 a. A charge lies in the Z = -3m plane in the form of a square sheet defined by $-2 \le x \le 2$, $-2 \le y \le 2$ m with $\rho_s = 2(x^2 + y^2 + 9)^{3/2}$ nc. Find Electric field at origin. (07 Marks)
 - b. Three negative charges $Q_1 = -1 \mu C$, $Q_2 = -2 \mu C$, $Q_3 = -3 \mu C$ are placed at the corners of an equilateral triangle. If length of each side is 1m, find magnitude and direction of EF at a point bisecting line between the charge Q_2 and Q_3 . (08 Marks)
 - c. Derive the expression for Electric field intensity due to several point charges. (05 Marks)

Module-2

- 3 a. A charge Q is uniformly distributed in a square ring of side l. Find E and V at centre of the ring.

 (08 Marks)
 - b. Determine work done in carrying a charge of -2C from (2, 1, -1) to (8, 2, -1) in Electric field $E = y\hat{a}_x + x\hat{a}_y$ considering the path along parabola $x = 2y^2$. (05 Marks)
 - c. State and prove Gauss divergence theorem.

(07 Marks)

OR

4 a. A point charge $Q = 90 \mu C$ is located at origin and these are two uniformly surface charge density distribution $-8 \mu C/m^2$ at r = 1m and $4.5 \mu C/m^2$ at r = 2. Find \overline{D} everywhere.

(08 Marks)

- b. Given $D = 5r \ \hat{a}_r \ C/m^2$. Determine whether divergence theorem holds good for shell region enclosed by spherical surface at r = a and r = b(b > a) centred at origin. (07 Marks)
- c. Find the potential and volume charge density at P(0.5, 1.5, 1)m in free space given $V = 2x^2 y^2 z^2$. (05 Marks)

Module-3

- 5 a. Let $V = A \ln \left[\frac{B(1 \cos \theta)}{1 + \cos \theta} \right]$
 - i) Show that V satisfies Laplace equation in spherical coordinates.
 - ii) Find A and B, so that V = 100 V and E = 500 at r = 5 cm, $\theta = 90$, $\phi = 60^{\circ}$. (08 Marks)
 - b. State and explain strokes theorem. (04 Marks)
 - c. Determine whether or not the following potential satisfy Laplace equation:
 - i) $V = r \cos \phi + z$ ii) $V = x^2 y^2 + z^2$ (08 Marks)

OR

6 a. Find the magnetic field intensity at P for the Fig.Q6(a)

Fig.Q6(a)

(08 Marks)

- b. There exist a potential of V = -2.5V on the conductor of 0.02m and V = 15V at r = 0.35m. Determine E and D by solving Laplace equation in spherical coordinates. (07 Marks)
- c. If the magnetic field intensity in region $H = (3y 2)\hat{a}_z + 2x\hat{a}_y$. Find current density.

(05 Marks)

Module-4

- 7 a. For region1, $\mu_1 = 4\mu$ H/m and for region2, $\mu_2 = 6\mu$ H/m. The regions are separated by Z = 0 plane. The surface current density at the boundary is $K = 100\,\hat{a}_x$ A/m. Find B_2 if $B_1 = 2\,\hat{a}_x 3\,\hat{a}_y + \hat{a}_z$ mT for Z = 0.
 - b. A circular conducting loop of radius 40cm lies in xy plane and has a resistance of 20Ω . If magnetic flux density is $B = 0.2 \cos (500t) \hat{a}_x + 0.75 \sin(400t) \hat{a}_y + 1.2 \cos(314t) \hat{a}_z$. Find induced current in Loop. (07 Marks)
 - c. Explain Lorentz force equation.

(05 Marks)

OR

8 a. A conductor of length 2.5m in Z = 0 and x = 4m carries a current of 12A in $-\hat{a}_y$ direction. Calculate uniform flux density in region, if force on the conductor is 12×10^{-2} N in direction

by $\left[\frac{-a_x + a_z}{\sqrt{2}}\right]$

(07 Marks)

b. Explain Magnetization and Permeability.

- (07 Marks)
- c. Explain force between differential current elements with equation.

(06 Marks)

Module-5

9 a. Given $H = H_m e^{j(wt + \beta z)} \hat{a}_x A/m$ in free space. Find E.

(07 Marks)

- b. Derive the wave equation for vector E and H field in conducting medium.
- (08 Marks)

c. Prove that $\nabla \times \vec{E} = -\frac{\partial B}{\partial t}$.

(05 Marks)

OR

- 10 a. Discuss the propagation of uniform plane wave in good conductor and explain skin depth.

 (08 Marks
 - b. Determine α , β , γ , v, λ , η for damp soil at frequency of 1 MHz given that $\epsilon_r = 12$, $\mu_r = 1$, and $\sigma = 20$ σ/m . (05 Marks)
 - c. Find the Amplitude of displacement current density in free space within large power distribution

$$H = 10^{6} \cos(377t + 1.256 \times 10^{-6} z) \hat{a}_{y}$$
 (07 Marks)