

CBCS SCHEME

17EC42

Fourth Semester B.E. Degree Examination, June/July 2023 Signals and Systems

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Check for periodicity and find its time period for the signal $x(n) = \cos \frac{\pi}{2} n \cdot \cos \frac{\pi}{3} n$.

 (07 Marks)
 - b. Calculate energy or power for the signal x(t) given in Fig.Q1(b).

Fig.Q1(b)

(07 Marks)

c. Given that $x(n) = \{2, 3, 4, 6\}$, sketch x(-2n + 1).

(06 Marks)

OF

2 a. Represent the signal x(t) in terms of g(t) given in the Fig.Q2(a).

Fig.Q2(a)

(08 Marks)

- b. Given that signal x(n) = 2n[u(n-1) u(n-7)]. Sketch the signals x(2n-3) and x(n+4).

 (06 Marks)
- c. Check for Linearity and Time invariance for the given system equation:

$$y(t) = x(t) + \frac{1}{x(t-1)}$$

(06 Marks)

Module-2

3 a. Given that

 $x(t) = e^{-at}$ for 0 to T

h(t) = 1 for 0 to 2T Calculate y(t) = x(t) * h(t)

(10 Marks)

- b. Prove the following properties of convolution in continuous domain:
 - (i) Associative
 - (ii) Commutative

(10 Marks)

OR

4 a. Given that x(t) = 3U(t) - 3U(t-4), $h(t) = 2\delta(t-1) + \delta(t-3)$. Calculate y(t) = x(t) * h(t) using properties. (10 Marks)

b. Given that

$$x(n) = \alpha^n$$
 $2 \le n \le 6$ for $0 < \alpha < 1$

$$h(n) = 1 \qquad 0 \le n \le 4$$

Find y(n) = x(u) * h(n) by proper graphs.

(10 Marks)

Module-3

5 a. Find step response for the given impulse response

(i)
$$h(t) = e^{-at} U(t-2)$$

(ii)
$$h(n) = \left(\frac{1}{2}\right)^n U(n-3)$$

(iii) h(t) = t U(t) (09 Marks)

b. Derive the formula to calculate step response in terms of impulse response. (05 Marks)

c. Find CTFS coefficient for the signal $x(t) = \sin 2\pi t + \cos 3\pi t$. (06 Marks)

OR

6 a. Define the causality for impulse response representation of the system and check the same for the following:

(i)
$$h(t) = e^t U(t-2)$$

(ii) $h(n) = a^n U(n+3)$ 0 < a < 1

(06 Marks)

b. Find FS for the signal x(t) in Fig.Q6(b). Also calculate magnitude and phase angle.

Fig.Q6(b) (09 Marks)

c. Find DTFS coefficient for the signal $x(n) = \cos\left(\frac{2\pi}{3}n + \frac{\pi}{3}\right)$. (05 Marks)

Module-4

7 a. Find DTFT for the following signal using appropriate properties:

(i)
$$x(n) = e^{-j2n} (3)^n U(n)$$

(ii)
$$x(n) = 2^n U(n-1)$$

(10 Marks)

b. Find IFT for the spectrum $X(j\omega) = \frac{-j\omega}{(i\omega)^2 + 3(i\omega) + 2}$. (10 Marks)

OR

8 a. Find IDTFT for the spectrum using convolution property

$$X(e^{j\Omega}) = \frac{1}{(1 - ae^{-j\Omega})^2}$$
 (10 Marks)

b. Find FT of the signal $x(t) = e^{-at} U(t)$ and calculate magnitude and phase angle. (10 Marks)

17EC42

Module-5

9 a. Give all ROC properties of Z-transform.

(05 Marks)

b. Find z-transform for the signal and plot ROC $x(n) = (n-2)(3)^{n-2}U(n-2)$.

(06 Marks)

(09 Marks)

c. Find Inverse Z-transform using partial fraction method:

$$X(z) = \frac{1 - z^{-1} + z^{-2}}{\left(1 - \frac{1}{2}z^{-1}\right)(1 - 2z^{-1})(1 - z^{-1})}$$
for the ROC 1 < |z| < 2

OR

10 a. Find transfer function and impulse response for the causal system for the given input and output signals:

$$x(n) = \left(-\frac{1}{3}\right)^{n} U(n); \qquad y(n) = 3(-1)^{n} U(n) + \left(\frac{1}{3}\right)^{n} U(n)$$
 (10 Marks)

b. Find z-transform and plot ROC with poles and zeros for the given signal

$$x(n) = (2)^n U(n) + (-3)^n U(-n)$$
 (10 Marks)

* * * * *