

17EC33

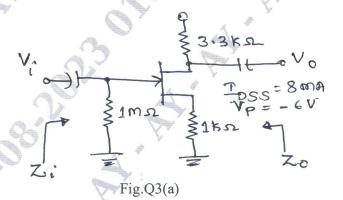
Third Semester B.E. Degree Examination, June/July 2023 **Analog Electronics**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1


Derive an expression for A_V , Z_i , and Z_0 for CE –fixed bias using r_e equivalent model.

b. What is an emitter follower? Discuss about emitter follower circuit and find Zi, Z₀ and A_v using r_e – model. (10 Marks)

- 2 Define h-parameters and derive h-parameters model of CE – BJT. (10 Marks)
 - b. For an emitter bias circuit (capacitor is unbypassed), determine re, Zi, Zo and Av. Given $R_B = 470 \text{K}\Omega$, $R_C = 2.2 \text{K}\Omega$, $V_{CC} = 20 \text{V}$, $R_E = 0.56 \text{K}\Omega$, $C_E = 10 \mu\text{F}$, $\beta = 120$, $r_0 = 40 \text{K}\Omega$, $C_C = 10 \mu F$.

Module-2

For the self-bias configuration shown has an operating point $V_{GSQ} = -2.6V$ and $I_{DQ} = 2.6mA$ with $I_{DSS}=8mA$ and $V_p=-6V$. Assume $Y_{OS}=20\mu S$. (Refer Fig.Q3(a)). Find: i) g_m ii) r_d iii) Z_i iv) Z_0 v) A_V .

(10 Marks)

Derive an expression for Zi, Zo and Av for JFET source follower circuit using small signal model. (10 Marks)

OR

- Explain the small-signal model of the FET. (10 Marks)
 - Write the ac equivalent circuit for voltage divider JET configuration. Determine Z_i, Z₀ and (10 Marks) Av.

Module-3

- 5 a. Determine:
 - i) The common logarithm of the number 2.2×10^3
 - ii) The power gain is decibles for $P_0 = 100$ m walts, $P_i = 5$ m watts

iii) Find voltage gain in dB for o/p voltage 100V and $R_0 = 20\Omega$. (08 Marks)

b. Prove that miller effect of input capacitance. $C_{mi} = (1 - A_V) C_f$ and output capacitance

$$C_{m_0} = \left(1 - \frac{1}{A_v}\right) C_f. \tag{12 Marks}$$

OR

- 6 a. Derive an expression for high frequency response of FET amplifier. (12 Marks)
 - b. Discuss the effect of various capacitors on multistage frequency response. (08 Marks)

Module-4

- 7 a. Discuss about the different types of feedback connections indicating input and output signal.
 (12 Marks)
 - b. With a neat circuit diagram, explain the working principle of FET RC-phase-shift oscillator.
 (08 Marks)

OR

- 8 a. What are the effects of negative feedback in an amplifier? Show how bandwidth of an amplifier increases with negative feedback. (10 Marks)
 - b. A crystal has the following parameter L=0.334H, $C_m=1pF$, C=0.065pF and $R=5.5K\Omega$. Calculate the series resonant and parallel resonant frequency and Q of the crystal. (10 Marks)

Module-5

- 9 a. With a neat circuit diagram explain the operation of a transformer coupled class A power amplifier. (10 Marks)
 - b. For the following distortion values, calculate:
 - i) THD
 - ii) Fundamental power component
 - iii)Pt.

Given:
$$D_2 = 0.2$$
, $D_3 = 0.02$, $D_4 = 0.06$, $I_L = 3.3$ A and $R_C = 4\Omega$. (10 Marks)

OR

- 10 a. With a neat circuit diagram, explain the working principle of complementary symmetry push pull amplifier. (10 Marks)
 - b. With a neat circuit diagram, explain the working principle of fold back current limiting circuit. (10 Marks)

* * * * *