

17EC35

Third Semester B.E. Degree Examination, June/July 2023 Network Analysis

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Find the equivalent resistance at AB using Y - Δ transformation technique for the circuit shown in Fig.Q1(a).

(06 Marks)

b. Using source transformation, reduce the following network shown in Fig.Q1(b) into a single source with series resistance. (06 Marks)

Fig.Q1(b)

- c. Define and distinguish the following network elements:
 - i) Linear and no-linear
- ii) Active and passive
- iii) Lumped and distributed
- iv) Ideal and practical current sources.

(08 Marks)

OR

2 a. Write the mesh equations for the circuit shown in Fig.Q2(a) and determine mesh currents using mesh analysis.

Fig.Q2(a)

(06 Marks)

b. Find the power dissipated in 10Ω resistor by node voltage method in Fig.Q2(b).

1 of 4

(10 Marks)

c. Explain the concept of Supermesh with example.

(04 Marks)

Module-2

3 a. State and prove Reciprocity theorem.

(04 Marks)

b. Using Superposition theorem, find I_x of the network shown in Fig.Q3(b).

(08 Marks)

c. Using Millman's theorem, find current through the load resistor R_L for the circuit shown in Fig.Q3(c).

(08 Marks)

OR

4 a. For the networks shown in Fig.Q4(a), obtain the Thevenin's equivalent as seen from the terminals A and B.

Fig.Q4(a)

(08 Marks)

b. For the network shown in Fig.Q4(b), determine the impedance Z_x such that maximum power is transformed from the source to the load of impedance Z_x .

Fig.Q4(b)

(06 Marks)

c. Using Norton's theorem, find the current 'I' for the networks shown in Fig.Q4(c).

Module-3

- 5 a. What is Initial and Final condition? Explain the behavior of R, L and C for the initial condition. (04 Marks)
 - b. In the network shown in Fig.Q5(b), the switch is closed at t = 0. Determine i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at $t = 0^+$.

Fig.Q5(b)

(08 Marks)

c. In the network shown in Fig.Q5(c), 'K' is changed form position 'a' to 'b' at t=0. Solve for i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at $t=0^+$, if $R=1000\Omega$, L=1H and $C=0.1\mu F$ and V=100V. Assume that the capacitor is initially unchanged.

Fig.Q5(c)

(08 Marks)

OR

6 a. Assuming that the staircase waveform of Fig.Q6(a) is not repeated, find its Laplace transform. If this voltage wave is applied to a RL series circuit with $R = 1\Omega$ and L = 1H, find the current i(t).

Fig.Q6(a)

(10 Marks)

b. Find the Laplace transform of the given function $f(t) = 5 + 4e^{-2t}$.

(04 Marks)

c. Find the Laplace transform of the saw tooth waveform in Fig.Q6(c).

Fig.Q6(c) 3 of 4

(06 Marks)

(10 Marks)

Module-4

- 7 a. Define Quality factor and Bandwidth. Also establish the relationship between Quality factor and Bandwidth in a series resonance circuit and there by prove that $Q = \frac{fo}{Bw}$, where fo is the resonance frequency. (10 Marks)
 - b. A series RLC circuit has $R=10\Omega$, L=0.01H and $Q=0.01~\mu F$ and it is connected across 10mV supply. Calculate i) f_o ; ii) Q_o ; iii) Bandwidth ; iv) f_1 and f_2 ; v) I_o . (10 Marks)

OR

- 8 a. Define the following terms with reference to resonant circuit
 - i) Resonance ii) Q factor iii) Selectivity iv) Bandwidth. (06 Marks)
 - b. Derive an expression for the resonant frequency of a parallel resonant circuit. Also show that the circuit is resonant at all frequencies of $R_L = R_C = \sqrt{\frac{L}{C}}$, where $R_L = \text{Resistance}$ in the inductor branch, $R_C = \text{Resistance}$ in the capacitor branch. (08 Marks)
 - c. Find the value of R_1 such that the circuit given in Fig. Q8(c).

Module-5

9 a. Find the 'Z' parameters of the circuit shown in Fig. Q9(a).

b. The Z – parameters of a two port network are Z_{11} = 20Ω , Z_{22} = 30Ω , Z_{12} = Z_{21} = 10Ω . Find Y and ABCD parameters of the network (10 Marks)

OR

10 a. Obtain the h – parameters for the network shown in Fig. Q10(a). (08 Marks)

- b. Obtain Transmission parameters in terms of hybrid parameters. (06 Marks)
- c. Following short circuit currents and voltages are obtained experimentally for a two port network:
 - i) With output short circuited : $I_1 = 5mA$; $I_2 = -0.3mA$ and $V_1 = 25V$.
 - ii) With input short circuited : $I_1 = -5 \text{mA}$; $I_2 = 10 \text{mA}$ and $V_2 = 30 \text{V}$.

 Determine Y parameters. (06 Marks)