

USN							21EC34
No.	, etc.,	- 13					

Third Semester B.E. Degree Examination, June/July 2023 Analog Electronic Circuits

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain the classical biasing for BJTs using a single power supply with circuit and relevant equations. How is bias current stabilized? (08 Marks)
 - b. Design collector-to-base feedback resistor circuit to obtain a dc emitter current of 1mA and to ensure $V_{CE} = 2.3V$. Let $V_{CC} = 10V$ and $\beta = 100$. (04 Marks)
 - c. Considering the conceptual circuit of common emitter amplifier, derive the expression for small-signal input resistance between base and emitter resistance. Mention the relation between r_{π} and r_{e} . (08 Marks)

OR

- 2 a. Why biasing by fixing V_{GS} is not a good approach? Explain biasing by fixing V_{G} and connecting a resistance in the source. (10 Marks)
 - b. Design Drain-to-Gate feedback resistor biasing circuit to operate at a dc drain current of 0.5mA. Assume $V_{DD} = 5V$, $K'_n W/L = 1mA/V^2$, $V_t = 1V$ and $\lambda = 0$. Use standard value for R_D and give actual values obtained for I_D and V_D . (06 Marks)
 - c. A BJT having $\beta = 100$ is biased at a dc collector current of 1mA. Find the value of g_m , r_e and r_π . Assume $V_T = 25 \text{mV}$. (04 Marks)

Module-2

- 3 a. Obtain the expression for characteristic parameters of the CS amplifier with circuit diagram and its equivalent circuit. (08 Marks)
 - b. A CS amplifier utilizes a MOSFET biased at $I_D = 0.25 mA$ with $V_{OV} = 0.25 V$ and $R_D = 20 K \Omega$. The device has $V_A = 50 V$. The amplifier is fed with a source having $R_{sig} = 100 K \Omega$ and a 20-K Ω load is connected to the output. Find R_{in} , A_{vo} , R_o , A_v and G_v .
 - c. Explain the internal capacitances of a MOSFET and hence draw the high frequency small signal model of MOSFET. (07 Marks)

OR

- 4 a. Find the mid band gain A_M and the upper 3-dB frequency f_H of a CS amplifier fed with a signal source having an internal resistance $R_{sig} = 100 K\Omega$. The amplifier has $R_G = 4.7 M\Omega$, $R_D = R_L = 15 K\Omega$, $g_m = 1 mA/V$, $r_0 = 150 K\Omega$, $C_{gs} = 1 pF$ and $C_{gd} = 0.4 pF$. (06 Marks)
 - b. Explain the working of FET based RC phase shift oscillator with circuit diagram. In an RC phase shift oscillator, $R = 200K\Omega$ and C = 200pF. Find the frequency of the BJT-based oscillator. (08 Marks)
 - Explain the working of clapp oscillator with a circuit diagram.

(06 Marks)

(06 Marks)

Module-3

- 5 a. Explain general feedback structure of the feedback amplifier with a signal flow diagram and mathematical expressions. (08 Marks)
 - b. Explain noise reduction with the application of negative feedback in amplifiers. (08 Marks)
 - c. A class B push-pull amplifier is supplied with $V_{CC} = 50V$. The signal brings the collector voltage down to $V_{min} = 5V$. The total dissipation from both transistors is 40W. Find the total power and conversion efficiency. (04 Marks)

OF

- 6 a. Explain transconductance amplifier with a neat block diagram. (06 Marks)
 - b. Explain class-B transformer-coupled amplifier. Prove that the maximum conversion efficiency of a class B transformer coupled amplifier is 78.5%. (08 Marks)
 - c. Explain class C output stage with a neat diagram.

Module-4

- 7 a. Explain inverting amplifier with external offset null circuit and relevant expressions for output voltage and closed loop gain. (07 Marks)
 - b. Explain successive-approximation type A/D converter with a neat diagram. (07 Marks)
 - c. Explain positive small-signal half-wave rectifier circuit with waveforms. (06 Marks)

OR

- 8 a. Explain the working of a second order high pass Butterworth filter with a neat circuit diagram and frequency response. Write the relevant design equations. (08 Marks)
 - b. Design second order low-pass filter at a high cutoff frequency of 1kHz. Choose capacitance value 0.0047μF.
 - c. Explain the operation of 555 timer as a stable multivibrator with relevant expressions.

(07 Marks)

Module-5

- 9 a. Explain the classification of power electronic convertors. (06 Marks)
 - b. With the help of elementary circuit and static V-I characteristics, explain the three regions of operation of the SCR. (08 Marks)
 - c. Explain class-A commutation with necessary circuit diagram and waveforms. (06 Marks)

OR

- 10 a. Write a note on basic requirements for the successful firing of a thyristor. (04 Marks)
 - b. Explain RC firing circuit with necessary circuit diagram and waveform. Write the relevant design equations. (08 Marks)
 - c. Explain UJT relaxation oscillator with a neat circuit diagram. Derive the expression for frequency of oscillation. (08 Marks)

* * * * :