

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 For the continuous time signal x(t) shown in Fig.Q1(a), draw y(t) = x(-2t - 1).



Fig.Q1(a)

(05 Marks)

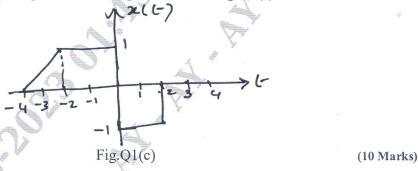

b. A discrete-time signal x(n) is shown in Fig.Q1(b), sketch the signal y(n) = x(n)u(2 - n).

Fig.Q1(b)

(05 Marks)

Sketch the even and odd component of the signal shown in Fig.Q1(c).

OR

- Determine whether the given discrete-time signal is periodic or not. If periodic, find its 2 fundamental period $x(n) = (-1)^n$. (05 Marks)
 - Find the average power of the triangular wave shown in Fig.Q2(b).

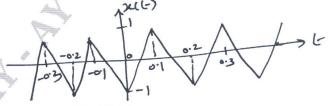


Fig.Q2(b)

(05 Marks)

- For the following discrete-time system, determine whether the system is:
- - (iii) Memoryless (iv) Causal (v) Stable (ii) Time-invariant (i) Linear (10 Marks) 1 of 3

Module-2

- 3 a. Consider a continuous-time LTI system with unit impulse response h(t) = u(t) and input $x(t) = e^{-at} u(t)$; a > 0. Find the output y(t) of the system. (10 Marks)
 - b. Find the natural response of the system described by difference equation $y(n) \frac{1}{4}y(n-1) \frac{1}{8}y(n-2) = x(n) + x(n-1) \text{ with } y(-1) = 0 \text{ and } y(-2) = 1.$ (10 Marks)

OR

- 4 a. The output and the input of an LTI system is related by y(n) = 0.8x(n+1) + 0.8x(n) 0.4x(n-1)
 - (i) Find the impulse response of the system
 - (ii) Is the system memoryless?
 - (iii) Is the system causal?
 - (iv) Is the system stable?
 - (v) Find the output if x(n) = u(n+1) u(n-3). (12 Marks)
 - b. Draw direct form I and direct form II implementation of the system

$$\frac{d^2}{dt^2}y(t) + 5\frac{d}{dt}y(t) + 4y(t) = \frac{d}{dt}x(t)$$
(08 Marks)

Module-3

- 5 a. Find the frequency response of a continuous-time LTI system represented by the impulse response $h(t) = e^{-|t|}$. (06 Marks)
 - b. Evaluate the Fourier transform for the signal, $x(t) = e^{-3t}u(t-1)$, find the expression for magnitude and phase spectra. (08 Marks)
 - c. What are the properties of CTFT? Briefly explain.

OR

- 6 a. Find the frequency response and the impulse response of the system described by the differential equation $\frac{d^2}{dt^2}y(t) + 5\frac{d}{dt}y(t) + 6y(t) = -\frac{d}{dt}x(t)$. (10 Marks)
 - b. Obtain the difference equation for the system with the frequency response

$$H(e^{j\Omega}) = 1 + \frac{e^{-j\Omega}}{\left(1 + \frac{1}{2}e^{-j\Omega}\right)\left(1 + \frac{1}{4}e^{-j\Omega}\right)}$$
(10 Marks)

Module-4

7 a. Determine the time-domain signal corresponding to the spectra shown in Fig.Q7(a) (i) and (ii) respectively.

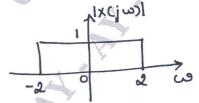


Fig.Q7(a)(i)

-2 (XCjw)

Fig.Q7(a)(ii)

(10 Marks)

(06 Marks)

b. Compute the DTFT of the signal $x(n) = 2^n u(-n)$.

(10 Marks)

OR

- 8 a. Obtain the frequency response and impulse response of the system having the output y(n) for the input x(n) as given below $x(n) = \left(\frac{1}{2}\right)^n u(n)$, $y(n) = \frac{1}{4} \left(\frac{1}{2}\right)^n u(n) + \left(\frac{1}{4}\right)^n u(n)$. (10 Marks)
 - b. Find the differential equation that represents the system with the frequency response

$$H(j\omega) = \frac{2 + 3j\omega - 3(j\omega)^2}{1 + 2j\omega}$$
 (10 Marks)

Module-5

- 9 a. Find the Z-transform of the sequence $x(n) = 7\left(\frac{1}{3}\right)^n \cos\left[\frac{2\pi n}{6} + \frac{\pi}{4}\right] u(n)$. Plot the ROC. (10 Marks)
 - b. Find the convolution of the signals $x_1(n) = \{1, -2, 1\}$, $x_2(n) = u(n) u(n-6)$. Use convolution property of Z-transform. (10 Marks)

OR

10 a. Find the inverse Z-transform of

$$x(z) = \frac{z^3 + z^2 + \frac{3}{2}z + \frac{1}{2}}{z^3 + \frac{3}{2}z^2 + \frac{1}{2}z}; \text{ ROC} : |z| < \frac{1}{2}$$

by partial fraction expansion method.

(10 Marks)

b. Determine the step response of the system (n) = $\alpha y(n-1) + x(n)$; $-1 < \alpha < 1$ with the initial condition y(-1) = 1.
